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_-ogy is advances in LS| microprocessors. Th

This paper consnders microprogramming as a tool for
implementing large scale integration, single- chip- micro-

processors. Design trade-offs for microprogrammed con--

trol are discussed in the context of semiconductor design
contraints which limit the size, speed, complexity and pin-
out.of circuits. Aspects of the control-unit of a new gen-
eration microprocessor, which has a two level m:cropro-
grammed structure, are presented.

INTRODUCTION

The field of smgle-chtp, large scale lntegratlon (LSI) mi-
croprocessors is advancing at an incredible rate. Progress
in the underlying semiconductor technology, MOS, is
driving the advance. Every two years, circuit densities are
improving by a factor of two, circuit speeds are increasing

by a factor of two, and at the same time speed-power

products are decreasing by a factor of four. Finally, yield
enhancement techniques are ‘driving down producti
costs and hence product prices, thereby increasin
mand and opening up new applications and mark

One‘effect of this progress in‘semiconduct:

eration, currently being introduced by sev
is an order of magnitude more powerfu previous
generation, the 8-bit microprocessorstof three or four
years ago. The new microproc shave 16:bit data
paths and arithmetic capablll directly address
multiple-megabyte memori s.of functional ca-
pability and speed they wi
end models of current

As LSl microproces
feasible to apply
that have been P!

nicomputers.

hnology matures it becomes
| lmplementatlon techniques,
Iarge ‘computers; to the design

s etter |mplementatlon techniques are
er to control compIeXIty and meet tight

decrease compIeXIty), flexibility (to ease de3|gn changes)" '

and reduced design: cost, apply to the implerentation
problems facmg today’s LS| microprocessor designer.

' This paper describes the control structure of one of the-

new generation, smgle -chip'microprocessors, the
MC68000 processor from Motorola, with special attention
to the constraints which LS| technology imposes on pro-

_cessor. implementation.. There are four such constraints:
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- cireuit size, circuit speed, interconnecti

rform all but the high -

package pin count. The implications ¢
on the structure of a microproces
microcode are explored.
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Though progressmg
poses strict constrai

ECHNOLOGY

.- LS| technology still im-
on‘the microprocessor designer.

Circuit Size nsity

_ nstant bound on the size of LS! chip
e ecgnomically produced. Even though circuit
 improving, at any given time there is a limit
ber . of gates that can be put on a chip. The
gonstraint on an LSI designer is to fit his design

a fixed maximum number of gates.

Clrcult Speed

As with circuit density, the LSI designer has a flxed
maximum circuit speed with which to work. Speed is lim- .
ited primarily by the power dissipation limits of the semi-
conductor package. The problem is compounded by the
fact that the processor. technology and main memory
technology in microprocessor applications are the same.
The speed gap between ECL logic and core memaory en-
joyed by the large computer designer is not available to
single-chip microprocessor designers.

‘Interconnect Complexity

Internal interconnections on an LS| circuit often take as

~ much chip area as the gates they connect. Furthermore,

the designer does not have the option of running jumper
wires across his circuit when he runs out of surface area.
In. some cases, it is cheaper to duplicate functions: on
various sections of the chip than to provide connection

. to a single centralized function. Another implication - of

the interconnect problem is that regular structures, such
as ROM arrays,.can be packed much more tightly than

‘random:logic.

Pin-Out:

Semiconductor packaging technology Ilmlts the num-
ber of connections an LSI chip may have to the outside
world. Common packages.today have 24 or 40 pins; 48

““and 64 pin packages are considered large. The pin-out

limitations ¢an be overcome by time multiplexing pin use,
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but the resulting slowdown is usually not acceptable.

Another constraint on LS| designers, not inherent in the
technology, is the intensely competitive climate of the
semiconductor industry. During the development of any
new product it is likely that other companies are working
on comparable products. Furthermore, the first product
available, of a given type, usually gets the largest share
of the market. This situation places LS| designers under
tight schedules. Any techniques for reducing product de-
sign times can affect product success. :

CONTROL UNIT DESIGN TRADEOFFS
Combinatorial Logic versus Microprogramming
Although previous LSI microprocessor implementa-

tions at Motorola have not been microprogrammed, a -

microprogrammed. implementation for MC68000 was
considered early in the project. The benefits of micropro-
gramming were convincing enough that once the feasi-
bility of a microcoded implementation was established,
the alternative of combinatorial ’Iogic implementation
was not seriously considered. This is in spite of the fact

that the implementers’ proven expertise was in combi-

natorial implementations and they had no experlence
with microprogramming,

Besides several non-technical reasons for micropro-
gramming (very tight design schedule, limited staff, etc.)
there are compelling technical advantages to micropro-
gramming, especially regularity and flexibility.

The design time constraint appears to be eased by mi-
crocoding. The regular structure of control store, in con-

trast with arbitrary control logic, decreases the complex-

ity of the control unit. This in turn decreases the design
time. A more complex controller can be lmplemented a
a given design cost. Regularity of the structure simp
the layout of the chip. Considerable time savin
sibly months) can be realized in the layout step
are less likely. Microprogramming allow:
architects to delay binding some decisior
sic control structure is determined, t
can go to work, even though the a
not be written. This reduces the
the design process by allowi

icrocode may
it sequentiality of
overlap of the de-

therefore shortens desi
The regular structur

ection complexity and therefore
circuitry. In. other words, an array

mbinatorial logic. Also, the regularity of
ates detailed simulation and testing.

Ive a major redesign of the chip. The flexibility of
mlcroprogrammlng can also ease the problems of design
changes and correction of design errors. Some . such
changes can be made merely by changing the control
store contents with no redesign of the logical circuitry.
Besides regularity and flexibility, microprogramming
provides another benefit. The clocking functions in mi-

croprogrammed control are much cleaner than those ran- _

. oﬁ-chtp contr

domly distributed throughout a combinatorial maze with
its -associated delay, distribution and regeneration re-
quirements. For instance, accurate delay elements are
difficult to construct on an integrated circuit, which
causes increased tolerances in control signais and slower
clocks for combinatorial circuits.

On-Chip versus Off-Chip Control Store

Given the size constraint for LSt chips it would be very
attractive to consider off-chip control store for a mlcro-
programmed LSI processor. Other constraints ma
impractical, however. The pin-out limitation s
its the width of the control word from off-
store. This implies that the control unit mi
be vertical. This in turn limits the o
processor since many micro cycles ar :
microcode to implement a single 4%
technology speed constraint do
solution to this problem by s,
time. Time multiplexing pi
izontal micro instructi
processor.

The LSI-11 from

nstruction. The
not allow brute force
ing up the internal cycle
equentially access hor-
Id also slow down the

‘Equipment Corporation uses
e resultis a fairly narrow (22 bits)

zontal versus Vertical Microcode
The decision to use horizontal or vertical microcode

~ involves conflicting sets of constraints. Horizontal micro-

code is indicated for several reasons. Vertical microcode
is highly encoded and requires a significant amount of
combinatorial logic to decode the micro instructions. Hor-
izontal microcode provides fully decoded (or nearly so)
fields which can directly drive the execution unit with little
intervening logic. Vertical microcode also typically re-
quires more micro cycles to emulate a given macro in-
struction. Because of the LSI technology circuit speed
constraint these extra micro cycles cannot be hidden in
each macro cycle by speeding up the internal circuitry.
Thus both the interconnect constraint (elimination of ran-

.dom logic) and the speed constraint argue for horizontal

microcode.

On the other hand, vertical microcode has advantages,
the major one being reduction of the size of the control
store. Horizontal micro instructions tend to be very wide
and are often duplicated several times in control store.

One solution is to use a two level control store, or hy-
brid vertical/horizontal structure. This is similar to the two
level control proposed by Grasselli.3/6 In the two level
control structure each macro instruction is emulated by
a sequence of micro instructions. The micro instructions
are narrow, consisting primarily of pointers to nano in-
structions. (Micro instructions also contain information
about branching in the micro sequence.) The nano in-
structions are wide, providing fairly direct, decoded con-
trol of thie execution unit. Nano instructions can be placed
randomly in the nano store since no sequential accesses
to nano instructions are required. Also only one copy of




each unique nano instruction need be stored, no matter
how many times it is referred to by micro instructions.

The Appendix contains an analytic treatment of two
level control. A derivation of the potential savings in'con-
trol store space, with examples, is given.

An extention of the two level concept is-made in the
Nanodata QM-1.5/6 In that machine a mircro instruction
can specify a sequence of nano instructions. This ap-
proach was not taken in the MC68000 for two reasons.
First, the initial microprograms showed that micro se-
quences tend to be very short (one, two, or three micro
instructions), so sequential nano instructions cannot be
used to advantage. Secondly, unless some facility for
nano branches.is implemented: multiple copies of some
nano instructions must be kept in nano store.

THE MC68000 CONTROL UNIT IMPLEMENTATION

Actual implementation of the general structure derived
above involves many other design problems. The re-
maining sections of the paper discuss the actual imple-
mentation chosen and the design considerations in-
volved. Major problems to be solved were minimization
of the size of control store, speed-up of the control-unit,
and reduction of interconnect between the control and
execution units. Control store size' was minimized by pro-
viding a suitable micro instruction branching capability
to facilitate sharing subsequences. The control unit speed
requirements made micro instruction prefetch necessary
so that each nano store access and the subsequent micro
store access are overlapped as much as possible.2 Exe-
- _cution Unitinterconnect is minimized by placing the nano
" store directly above the Execution Unit (with space for
some decoding). Fields in the nano store are. allocated
such that control store output lines are close to the,
responding Execution Unit control points.

The MC68000 control unit:supports an ins
which consists of general single and dual
structions involving byte, word (16 bits)
operands. Operations are generally m
register-to-memory, or register-to-r

000 processor is de-
s load and store mul-

The MC68000 processor provides eight 32-bit address
manipulation registers and eight 32-bit data manipulation
registers. Address registers allow 16- and 32-bit opera-
tions and data registers allow 8-, 16-, and 32-bit opera-
tions. All address and data registers are accessible to the
programmer. In addition, there is a program counter with
limited user accessibility and there are several registers
not available to the user-which are used for temporary
storage during instruction execution.

The register file is divided into three sections as shown
in Figure 1. Two buses connect all of the words i
register file. The register file sections are either jso
or concatenated using the bi-directional bus
This permits general. register transfer operam
register sections. A limited arithmetic un
each segment containing address regist ords and a
general capability arithmetic and logi itis located in-
the data.low word section. This allow$:address and data °
calculations to occur simultanegusly. For example, it is
‘possible to do a register-t word addition con-
currently with a program ¢ crement (the program
counter is colocated w1t ress register words and
carry out from the ¢ unitlow is provided as carry
in to the arithmeti ). Special functional units for
bit manipulati ing and unpacking data are located
in the data s

-port static RAM cell which conveniently sup-
two-bus structure. The second was the 16-bit
h which made 16-bit. segmentation of the reg-
s desirable. .
addition to the configuration of the Execution Unit;
other factors contributed to the design of the control unit.
The instruction set was specified and considered frozen.
The first version assumed that op codes and instruction
formats would remain_static as defined, though holes
were left in the original op code space to allow planned
orderly expansion of the available instruction set. »

Restriction to fixed instruction formats has several im-
portant consequences:

1. Certain fields, such as register designators, can be-
extracted directly from known positions in the in-
- struction. This tends to reduce control store size and

. simplify instruction decodmg
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2. Register selection and ALU functions tend to remain
unchanged for the duration of a single instruction
execution. These register designators and ALU func-
tions can be extracted from the instruction (de-
coded, if necessary) and routed directly to the ex-
ecution unit, bypassing the control store.

3. The control store need only contain information
about when a register is read or written or when the
ALU should operate.

Taking advantage of these observations can Iead to sim-
plification of the control and reduction of the required
micro control store size.

. and transfers next state contr

INSTRUCTION

REGISTER
]

INSTRUCTION _ CONTROL
DECODE AN STORE
ALUFUNCTION& . - TIMING & SWITCH

N REGISTER SELECTION ' CONTROL SIGNALS
EXECUTION UNIT

FIGURE 2. SIMPLIFIED BLOCK DIAGRAM O
MC68000 CONTROL STRUCTURE,

A simplified block diagram of the MC68000 control
structure, shown in Figure 2, illustrates an application of
the above observations to the controller design. The basic
idea is to extract from the macro instruction word all in-
formation which is macro instruction static; that is, in-
formation which does not depend on timing during the
instruction execution for its usefulness. Signals which are
not timing dependent bypass the control store and act
directly on the Execution Unit.

-In a typical microcontrol implementation, the Instruc-
tion Decode provides a starting address to the
Store. The Control Store generates a sequen
signals, for the Execution Unit, and its ow ny
information. Branching is accomphshed u
from the Execution Unit to alter the next §
into the Control Store. At the en
macro instruction, the Control St
the next macro instruction into®

formation
~ ion of the
ses loading of
struction Register
e Instruction Decode

unit.

Traditional implem
tion using a’single Ci
quencing informatit
be |mpract|cal Jbeca

the MC68000 control sec-
"Store with internal state se-
las investigated. It was found to
the control store was too large

fiplementation. Methods for reduction
il store area required were considered.
ified that necessary controli store area could
ially reduced through the use of a two-level

8000 control unit is shown in Figure 3.
a two-level structure, the first level (micro control
} contains sequences of control word addresses for

the lower level (nano control store). Dynamic operatlon

is illustrated in Figure 4 (bus activity for an indexed ad-
dress, register to.memory add). The Instruction Decode
provides the starting address for a single macro instruc-
tion routine. The micro control store provides a sequence

ADDRESS
INSTRUCTION R MICRO CONTROL
DECODE STORE
ESTIMATED SIZE
640 X 10
REGISTER 1 :
& FUNCTION BRANCH SELECTION ADDRESS
SELECTION CONDITIONALS
CONTROL
EXECUTION UNIT (: NANO CONTROL
ESTIMATED SIZE
280 X 70

FIGURE 3. MC68000 CONTROL STRUCTURE




of addresses into the nano control store. The nano control
store contains an arbitrarily ordered set of unduplicated
machine state control words. The-practicality of this struc-
ture for space reduction rests on two mutually dependent
assumptions.

. First, the number of different control states actually im-

- plemented-is a small fraction of the number of possible
control states. For example, a reasonably horizontal con-
trol word for the MCB68000 Execution Unit contains about
70 bits, implying a possible 270 different control words.
Most of the possible control states are not-meaningful
for macro instruction execution. The implementation of
the complete set of macro instruction sequences for the
MC68000 processor requires only about 200 to 300 (< 29)
unique nano words. This set of nano words is a very small
- fraction of the set of possible states. Nano words are
uniquely specified by no more than nine bits of address.
As a result, words in the micro control store address se-
quences need only allocate nine bits for each nano control
store address.

‘Second, there must be some redundant use of the nec-
essary control words to realize a reduction in control store
area. If there were a one-to-one correspondence between
nang, control store addresses in the micro control store
and control words in the nano control store, then the nano
address in the micro instruction could be replaced by the
contents of the addressed nano instruction and the ad-
dress bits eliminated. If, however, there are more ad-
~ dresses in the instruction sequences. than- there - are
.unique control words, a reduction in total control store.

sizeé may be possible. (For.a heuristic derivation of these
dependencies and possible advantages, see the appen-
dix.) In the-MC68000 control unit, for example, each dif-
ferent control word is used an average of between W

and three times. There are about 650 nano addresse
a complete implementation of micro control
dress sequences for the instruction set; yet th

‘and space constraints

-store are assi

about 280 different control words used. A singie level
implementation would have required about 45K control
store bits, while the two level structure uses only a Ilttle
more than half as much. ‘
Another parameter which can have a significant effect
on control store size is the extent to which the control
word is encoded. In-a two level control structure, each
control word in the nano control store is uniquely rep-
resented .by an address in the micro control store. The
address in the micro control store could be consider
to be a maximal encoding of the control word becat
there is a one-to-one correspondence between
control words and unique addresses-in the mi
store address sequences. (The nano contro}
be viewed as merely an orderly meth
maximally encoded state information
more horizontal format.) At the ot
could be allocated in the control
control point, that must be drmaﬂ
If the control word is enc
essary between the contr
tion Unit must be consj

reme, one bit
ach switch, or
in the Execution Unit.
"decoding logic nec-
utput and the Execu-
with respect to both timing

roi unit, bits in the nano control
nerally on a functional basis with
signed to specific control subfunc-
separate short control flelds are as-

In the MC68000;

individual subfie
tions. For €

signed.

minimum bits necessary to provide the required
unction states subject to the constraint that the de-
ode to individual control lines involve no more than ap-
proximately two-logic levels; Some space is necessary
between the nano control store output and the Execution
Unit control points for alignment of the control store out-
puts with their respective control points and to combine

A
INSTRUCTION B
DECODE B MICRO
- o CONTROL
P —— — — STORE
~ D
SEQUENCE MODIFICATION £
, A A
REGISTER .
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HEGISTEH — ~ NANO CONTROL
SELECT . STORE
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- OP CODE- | FUNCTION S " .
‘ v [ FETCH. |
EXECUTION UNIT - / 8 ] ETC
¥ {E] store ]
- | b.] ADD, STORE
ADD, FETCH | .

FIGURE 4. MC68000 CONTROL UNIT DY'NAMIC‘OPE‘RATION



certain timing information with appropriate control point
variables. Within this space it is possible to provide min-
imal decoding at very little cost in additional area while
the signal encoding in the nano control store saves con-
siderable nano word width and, hence, total storage

space required. In the MC68000 control unit the nano

word width is approximately 70 bits, while the Execution
Unit contains about 180 control points.

The decision to implement the MC68000 control unit
using a two level storage structure was based on mini-
mizing control store area. Although: necessary control
store area was significantly reduced, introduction of the
two level concept created several problems.

One problem with a two level control store is that ac-
cess to a memory is not instantaneous and in a two level
structure the accesses must be sequential. The aiterna-
tive, combinatorial decoding, does not proceed in zero
time either, which partially compensates for the extra
memory access. Further compensation for the extra ac-
cess time requires complex control timing techniques
such as instruction prefetch access overlap, and multiple
word-accesses.

Another probliem assocnated with a two level structure
is the delay associated with conditional branching.

Viewed in a strictly sequential fashion, a condition set in

the Execution Unit must affect the selected micro control
store address sequence which, in turn, affects the nano
word selected. The nano word selected ultimately causes
actions which can be dependent upon the value of the
tested combination. Techniques used to minimize the se-
quential nature of this type of delay include physical or-
ganization of words within both control store levels and
simultaneous access to more than a single control store
word. For example, an access to a row of nano

on conditional branch information. Also, i
probable outcome of a conditional bra
branch more than another. In such an j
possible or even desirabie to prefe
associated with the most likely branchiggndition. The best
example of the usefulness of idea is its application
to a decrement and branct ‘type instruction.
Branching is heavily favor a prefetch at the des-
tination location can gr inimize execution delays
associated with loopil

If common micr:
dress calculatiof
eral macro ins

uction routines, such as the ad-
\es, are to be shared among sev-
ns, then mechanisms must be pro-

The capability to perform direct branches in the micro
control store allows various macro instruction sequences
to share common- ending routines. It also permits more
flexibility in organizing the micro routine sequences
within the control store address space.

Branching mechanisms are mentioned here because
they occur very commonly. In the MC68000 micro control

store’

store, the average micro instruction sequence encounters
some type of branch at about one out of every two nano
addresses. Implementation of efficient branching mech-
anisms is critical for providing fast execution times with
a microprogrammed structure. The details of the branch-
ing mechanisms are, however, very spegcific to a partic-
ular implementation and are, therefore, not reievant be-
yond the general considerations already presented.

OTHER ISSUES

Minimization

Special care has been taken during the mic
ming to detect duplicate nano instructions.
in some cases it has been possible to re
quences, delaying or anticipating s
use previously created nano instrug
operands are moved into tem
struction execution. This tend
ecution .cycles more ind
and, hence, improves ce for common nano in-
structions. Each uniqu yinstruction that can be elim-
inated reduces nangd gtore size.
Micro store 31@: nimized by careful detection of
i iero instructions; for instance, those
itions, or storing results.

m_
nd that,
icro se-
ins, so as to
8. For instance,
gisters early in in-
ake subsequent ex-
ent of operand sources

' of Structure

Frieder and Miller2 argue that simplicity of structure
tnicroprogramming easier. The MC88000 arith-
and register unit (the Execution Unit) is quite sim-
e: all resources (registers, temporaries and functional
nits) are tied to each of the two internal buses. This
structure simplifies microprogramming, since all trans-
fers of information use the same mechanism.

Generality of Structure

Frieder and Miller2 also call for generality of structure.
This is probably important for general purpose emula-
tion. In the MC68000 processor the architecture is known
and fixed. Various non-general assumptions were made,
for instance, about macro instruction decoding and the
location of register fields in macro instructions. Because

" of the strict technology constraints, the control structure

is optimized for emulation of a single architecture.

User Microprogramming

Current technology requires that large on-chip control
store be implemented in ROM, which is much denser than
alterable memory. Technology advances will certainly
ease this requirement in the near future. Single-chip com-

puters have already been built with small on-chip alter-

able memories. Clearly, custom microprogramming, user
microprogramming and dynamically altered micropro-
grams will be feasible on LS| microprocessors in the
future.

SUMMARY
Microprogramming is a viable tool for implementation
of LS|l microprocessors. The current state of the art in
semiconductor technology places certain constraints on



the size, speed, interconnect complexity and pin-out.-of

today's integrated circuits. These constraints affect. the

form of microprogrammed control:that can be used. The

structure described here: two level, overlapped, hybrid

vertical and horizontal microcontrol, implements a new
. generation microprocessor within these constraints.
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Appendlx Control store size reduct ;
_control store.

k -~ MICRO INSTRUCTION

t———— 1 <-logok 31
CONTROL BITS NEXT MICRO INSTRUCTION ADDRESS
- FIGURE A1. MODEL OF A SINGLE
LEVEL CONTROL STORE

a two-level

Assume:

n = number of individually-controlied switches in'an
execution unit (width of the horizontal control
word)

k = total number of control states required to im-
plement all instructions

p = proportion.of unique control states to total num-

ber of control states

Single-Level Control Store
-In a simplified model of a. smgle -level contr
there are k micro instructions, each containin
state (n bits) and a next micro instruction addri
bits). See Figure A1.
Total size-of single-level control st

1=k (n + [log:

Two-Level Control Store

A simplified. mode! of
micro control store of k
address ([logavlbits)-an
(llog2k] bits). Th
instructions, e

Total siz

el control store has a
instructions with a nano.
xt micro instruction address .
control store has v (=pk) nano
ining a control state (n bits).
evel control store:

k (llogav]l + llogokl) + nv 2)
pk - (3)

Store Size Comparison
-level store requires less control store bits than sin-
gle control store when:
So < S1 k
using
“{1), (2} and (3) glves B .
k([logzpk]+[|ogzk])+npk < kin+[log2k]) (@

- Iogzv ——-—>|<—>— loggk

STORE k' MICRO INSTRUCTIONS

|
!
I
* MICROCONTROL |
I
I
I
I
|

NANOCONTROL

NANO INSTRUCTIONS -V STORE

«————— n ——
CONTROL BITS

FIGURE A2..MODEL: OF A TWO
LEVEL CONTROL STORE



Simplifying (4) gives:
{logokl+[logopl+np < n : {8)
Solving for n and k in'(5) gives the result that two-level
store is smaller than single-level control store if
. [Iogzktgogzp‘l (6)

or

k < % an{1—p) 7

Example

In typical microprogrammed machines, n (the width of
‘the horizontal control word) varies from 20to 360. k varies
from 50 to 4000. Typical values for p are not known.

In the MC68000 microprocessor

n =70
k = 650
p = 4
S1 = k (n+[logakl)
= 52400
S2 = k (llogav]+[logzk]} +nv
= 305650




De3|gn and Implementatlon of System

‘Features for the MC68000

MOTOROLA Semiconductor
Austin, Texas

ABSTRACT

The MC68000 combines- state-of-the- art technology,
advanced circuit design techniques, and computer sci-
~ ence to achieve an architecturally advanced 16-bit micro-
processor. The processor-is implemented by a micropro-

grammed control of an execution unit.: The processor .

incorporates advanced system features, including multi-
level vectored interrupts, privilege states, illegal instruc-
tion policing, and bus cycle abort. This paper discusses
the implementation of the system features and the influ-
ence of the |mplementatlon method - ‘on the processor
design.

1..MC68000 Overview
1.1. Resources

Figure 1 shows the reglster resources of the MC68000
.-microprocessor. The first eight registers (DO-D7) are

used as data registers for byte (8-bit), word {16-bit), and
long (32-bit) data operations.; The second set.of nine reg-

isters (AO-A7, A7') are used as address registers, sup- -

porting both software stack operations and base address-
ing. There is a separate 32-bit program counter andan
bit status register.

Figure 2 shows the format of the status regis
trace control (T), supervisor/user (S), and Interr
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FIGURE 1. MC68000 REGISTERS -
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. (I_O—I2) appear in the upper system byte. The co

codes appear in the lower user byte: extend (X)
(N), zero (Z), overflow (V), and carry (C).
‘MC68000 memory is organized as 16-
dressable to 8-bit bytes. All address
done to 32-bit resolution; but only t

ds, ad-
tions are.
order 24 bits

1.2. Instructions

The MC68000 support
basic types of addressin
supported data types
and long. words.

6 instruction types. The
. BCD digits, bytes, words,

include the capability.to do post-
I decrement dlsplacement and indexed

te operations, bit manipulation instructions, pro-

‘gram control, and system control instructions.

1.3. Structure

To-convey an understanding of the relationship be-
tween system features- as desired (originally specified)

- "and as ultimately supported, it is necessary to first de-

scribe the philosophy of the control structure which will
provide the background for implementation tradeoffs.
The MC68000 uses-a microprogrammed control unit
which is tightly coupled to the execution unit and the bus
interface: (The control structure and execution unit are
described in greater detail elsewhere [2].) Tight coupling
permits full overlap of fetch, decode, and execute cycles.
Overlap of these processing phases has impact on im-
plementation of system features in the MC68000.

SYSTEM BYTE USER BYTE
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5
NN sh\\\l 'ZI ] 'oL\\\\\‘i XINI Z] VT—I
TRACE MODE b e
SUPERVISORY
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FIGURE 2. MC68000 STATUS REGISTER FORMAT




A basic block diagram of the two level control structure
used by the MC68000 is shown in Figure 3. The micro
control store contains a set of routines. Each routine is a
sequence of micro orders which implements a macro in-
struction or a portion of a macro instruction (such as an
addressing mode). The macro instruction register decode
(Instruction Decode) provides a starting address to the
micro control store which subsequently provides its own
next addresses for a sequence of micro orders which per-
forms operations required by a particular macro instruc-
tion. Each micro word contains an address which is used
to reference a word in the nano control store. The riano
control store contains the set of unique control words
which is required to support the entire instruction set.
Words in the nano control store are field-encoded such
that with two to three levels of decoding they will directly
drive control points in the execution unit. To aid in re-
ducing the size of the control unit the MC68000 employs
a residual control technique [1]. Information which re-
mains static for the duration of a macro instruction is held
in a register (not translated through the control stores)
so that space in the control stores is reserved for infor-
mation which changes from micro cycle to micro cycle..

A simplified view, as illustrated by Figure 4, assumes
that instructions exhibit only fetch, decode, and execute
cycles. The boundary between macro instructions is con-
trolled by the execute cycle (which may require several
machine cycles to complete). The basic philosophy of the
control structure is that fetch, decode, and execute cycles
will be overlapped across every macro instruction bound-
ary. This implies that the micro routine for each macro
instruction must insure that:

1) The next macro instruction word is accessed with su
ficient time to be fully decoded by the end of the
rent macro instruction.

2) The word following the next macro inst
fetched by the end of the current ma
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- OTHERJ
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FIGURE 3. BLOCK DIAGRAM OF
THE MC68000 CONTROL UNIT
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FIGURE 4. SIMPLIFIED INSTRUCTION
EXECUTION SEQUENCE

As an example, assume a simple sequence of single
word instructions as shown in Figure 5. It is the respon-
sibility of the micro routine for the subtract instruc i n to
ensure that the add instruction is placed into IR
ficient time to decode and that a fetch is
word following the add instruction. Eve
instruction consists of multiple word
might contain an immediate value,
address) the above stated constrai
cro routines will make as many ace
stream as there are words ip the
ciated macro instruction pesses will, however, be
skewed forward by tw 0 provide the necessary
overlap.

SuB
ADD
cmp

FIGURE 5. SIMPLE SEQUENCE
OF INSTRUCTIONS

2. System Features

The MC68000 includes features beyond efficient in-
struction execution. It also has system features for easier

~ program and memory management, and for handling of

exceptional conditions.

2.1. Privilege States

The MC68000 processor operates in one of two states
of privilege: the “user” state or the “supervisor” state.
The privilege state determines which operations are le-
gal. It is used to choose between the supervisor stack
pointer and the user stack pointer in instruction
references.

When the processor starts a bus cycle, it classifies the
reference via an encoding on the three Function Code
pins. This allows external translation of addresses, con-
trol of access, and differentiation of special processor
states, such as interrupt acknowledge.

Table 1. Classification of References

Function Code Reference Class
000 (Reserved)
001 User Data
010 User Program
011 (Reserved)
100 (Reserved)
101 Supervisor Data
110 Supervisor Program
111 Interrupt Acknowledge




2.1.1. Supetvisor/User State

For instruction execution, the supervisor state is de-
termined by the S-bit of the status register; if the S-bit is
on, the processor is in supervisor state, otherwise, it is
in the user state. The supervisor state is the higher state
of privilege. All instructions can be executed in supervisor
state. The bus cycles generated by instructions executed
in supervisor state are classified as supervisor references.
While the processor is'in the supervisor perlIege state,
those instructions which use either the system stack
pointer implicitly or address register seven (A7) exphcntly
access the supervisor-stack pointer.

The user state is the lower state of privilege. Most in-
structions execute the saime in user state as in supervisor

state. However, some instructions which have important -

system effects are made “illegal.” For example, to insure
that a user program cannot enter the privileged state ex-
cept in a controlled manner, the instructions which mod-
ify the entire status register are privileged. The bus cycles
generated by an instruction executed in user state are
classified as user state references. While the processor
is in the user privilege state, those instructions which use
either the system stack pointer implicitly, or address reg-
ister seven (A7) explicitly access the user stack pointer.

2.1.2. Change of Privilege'State

Once the processor is in'the user state executing:in-
structions, only exception. processing (described below)
can change the privilege state. During exception pro-
cessing the current setting of the-S-bit of the status reg-
ister is saved, and the S-bit is forced on, putting the pro-
cessor in ‘supervisor state. Thus when instruction
execution resumes at the address specified to_proc
the exception, the processor is in the supervisor pri
state. .

- The transition from supervisor to user state
complished by any of four instructions: R
Status Register, ANDI to Staus Register,
tus Register. The RTE instruction fetch

the instruction fetch at the ne @M counter address
in the privilege state determ
status register. The MOVE
ister instructions-each
state, perform the a

ister, and then fe

perands in the supervisor
iate update to the status reg-
1ext instruction at the next se-
er ‘address in the pr|V|Iege state

. “imlusmn of separate implicit stack pointers for the
user and supervisor states caused increased complexity
in the register decoders which had to distinguish between
a.user and supervisor register for all implicit and explicit
references-to-the system stack pointer (A7). Addition of
one 32-bit register to the execution unit was not a major
cost factor, but did increase the width of the execution
unit. Since the supervisor mode is used to create user
environments, instructions were required which allowed

y the S-bit of the new

res affected implementation cost of the proces— A

mampulatlon of the user stack pointer while in supervisor
mode. This further complicated the register decoders and
forced introduction of an additional specialized decoder
for explicit control of the user stack pointer while in su-
pervisor mode. ’

The function code pins are employed to classify pro-
cessor bus cycles. Two bits in the micro control store
classify an access as data space, program space, interrupt
acknowledge, or unknown. The unknown state is com-
bined with a value from a special decoder to determine
whether ‘the associated access is to data or progi
space.- Unknown states occur in micro routine;
may be shared by data space access macro i
and instruction space access macro instru
ample, the base plus displacement adg
(data space access) and the progra
placement addressing  mode (pro
share the same micro routine.

The user/supervisor functio
tained from the status re
mation is not provided b
micro control store wo.
from the micro control
some means in tk
ulation of the

de information is: ob-
ser/supervisor infor-
ro control store due to
constraints. Its exclusion
plies that there must exist
control store for direct manip-
upervisor bit in the status register
ocessing. In addition, there are sev-
instructions which can change the user/
vAny prefetches done prior to manipulation
us register must be discarded. Since the micro
for manipulation of the user byte of the status
Tt are shared with routines for manipulation of the
e status register, the delay associated with ignoring
the prefetches is suffered by both instruction types.

2.2. Exception Processing

2.2.1. Processing States

The processor. is always in one of three processing
states: normal, exception, or halted. The normal pro-
cessing state is that associated with instruction execu-
tion; the bus cycles are to fetch -instructions and. oper-
ands, and to store results. The STOP instruction is a
special case of the normal state in which no further bus
cycles are started.

The exception processing state is associated with in-
terrupts, trap instructions, tracing and other exceptional
conditions. The exception may be internally generated,
by an instruction or by an unusual condition arising dur-
ing the execution of an instruction. Externally, exception

- processing can be forced by an interrupt, by a bus error,

orby a reset. Exception processing is designed to provide
an efficient context switch so that the processor may han-
dle unusual conditions.

Exceptions can be grouped according to their genera-
tidn. The Group 0 exceptions are Reset, Bus Error, and
Address Error. These exceptions cause.the instruction
currently being executed to be aborted, and the exception
processing to commence at the next minor cycle of the
processor. The Group 1 exceptions are trace and inter-
rupt, as well as the privilege violations and illegal instruc-
tions. These exceptions allow the current instruction to
execute to completion, but preempt the execution of the
nextinstruction by forcing exception processing to occur.



The Groupl 2 exceptions occur as part of the normal pro-
cessing of instructions. The TRAP, TRAPV, CHK, and Zero
Divide exceptions are in this group..

Table 2. Exception Groups

Reset Exception processing begins at
Group 0 [Bus Error the next minor cycle
" | Addr Error o
Trace Exception processing begins
Interrupt before the next instruction
Group 1 :
lllegal
| Privilege
TRAP, TRAPV, |Exception processing is started
Group 2 [CHK, by normal instruction execution
Zero Divide -

The halted processing state is an indication of cata-
strophic hardware failure. For example, if during the ex-
ception processing of a Bus Error another Bus Error oc-
curs, the processor assumes that the system is unusable
and halts.

2.2.2. Exception Processing Initiation v

The processor hardware recognizes three distinct types
of exception conditions: internal exceptions (Group 2),
non-catastrophic exceptions (Group 1), and catastrophic
exceptions (Group 0). Exception processing for Group 2
exceptions is initiated through normal instruction exe-

cution. Group 2 exceptions are detected and processed.

via micro routines without the aid of spemahzed addi-
tional hardware.

When a Group 1 exception arises, execution of t
rent macro instruction continues unaffected (i
prefetch and decode of the next,macro insf

g e cannot continue; the
ss preempts the current mi-

brs are memory locations from which
ches the address of a routine which will

ngth, except for the reset vector, which is four
ength. A vector number is an eight-bit number,
h when multiplied by four gives the address of an
ption vector. Vector numbers are generated inter-
nally or externally, depending on the cause of the excep-
tion. The exception vectors are assigned to low addresses
in the supervisor ddta space.

2.2.2.2, Exception _Processing Sequence

All exception processing is done in supervisor state,
regardless of the setting of the S-bit in the status register.

The bus cycles generated during exception processing
are classified as supervisor references. All stacking op-
erations during exception processing use the supervisor
stack pointer.

Exception processing occurs in four identifiable steps
During the first step, an internal copy is made of the status
register. After the copy is made, the special processor
state bits in the status register are changed. The S-bit is
forced on (1), putting the processor into supervisor priv-
ilege state. Also, the T-bit is forced to 0 (off), whic will
allow the exception handler to execute unhind
tracing. For the reset and interrupt exceptions;
rupt priority mask is also updated.

In the second step, the vector number
is determined. For interrupts, the Ve
tained by a processor fetch, classnfle'

iternal logic pro-
mber is then used
to generate the address of

The third step is to sa
Only for the Reset exc
program counter v
register are stacke
The program
neXt unexe
fining th CU

rrent processor status.
his not done. The current
the saved copy of the status
§ing the supervisor stack pointer.
- value stacked usually points to the
ruction. Additional information de-
context is stacked for the Bus Error and
xceptions.

tep is the same for all exceptions. The new
ram counter value is fetched from the exception vec-
he processor then resumes instruction execution.
nstruction at the address given in the exception vec-
r is fetched, and normal instruction decoding and ex-
cution is started.

2.2.2.3. Reset
2.2.2.3.1. Description

The Reset pin provides the highest level exception. The
processing of the Reset signal is designed for system
initiation, and recovery from catastrophic failure. What-
ever processing was in progress at the time of the reset
is aborted. The processor interrupt priority mask is set at
level seven. The vectdr number is internally generated to
reference the reset exception vector at location 0 in the
supervisor program space. Because no assumptions can
be made about the validity of register contents, in par-
ticular the supervisor stack pointer, neither the program
counter nor the status register is saved. The address con-
tained in the first two words of the reset exception vector
is used to initialize the supervisor stack pointer, and the
address in the next two words is used to initialize the
program counter. Finally instruction execution is started
at the address in the program counter.

2.2.2.3.2. Hardware Support

Hardware support for reset permeates the machine be-
cause reset must provide machine initialization from any
internal state. Activation of the reset pin preempts all
other pending conditions and current activities. Normal
operation of the control unit is suspended and the control
unit is forced to a state from which it begins executing
the reset micro routine. Bits in the nano control store are

provided to allow the micro routine to obtain the reset




vector address,-force the machine into supervisor mode,
and set the priority-mask (to the level specified by a de-
coder — in this case, level seven). Additionally, since the

" register designatorsfor the preempted instruction are un-

known, the nano control store must provide bits which
can directly specify selection of the implicit stack pomter
for its lnltlallzatlon

2.2.2.4. Interrupts
2.2.2.4.1. Description

The MC68000 provides seven levels of interrupt prior-
ities. Devices may be chained externally within interrupt
priorities, allowing an unlimited number of peripheral de-
vices to interrupt the processor. Interrupt priority levels
are numbered from one to seven, level seven being the
highest priority. The status register contains a three-bit
mask which indicates the current processor priority, and
interrupts are inhibited for all priority levels less than or
equal to the current processor priority.

An interrupt request is madeto the processor by en-

coding the interrupt request level on the interrupt request

pins, a zero indicates no interrupt request. Interrupt re-
quests arriving at the processor do not force immediate
exception processing, but are made pendmg. Pending in-
terrupts are detected between instruction executions. If
the priority of the pending interrupt is lower than or equal
to: the current processor priority, execution continues

‘with the next instruction and the interrupt exception pro-
cessing:is postponed. (The recognition of level seven is

slightly different, as explained below.)
if the priority of the pending interrupt.is- greater than
the current processor priority, the exception processing

'sequence is started. First a copy of the status register.is

saved, and the privilege state is set to supervisor, tras
is suppressed, and the processor priority. level is
the level of the interrupt being acknowledge
cessor fetches the-vector number from th
device, classifying the access as an int
edge-and displaying the level: number
being: acknowledged on the ‘addressh

“interrupt
ternal logic

automatic vectorlng, or-i
sponding: (Bus Error}. If ‘ex
i ‘internally generates a vec-
tor: number which- i
number. If external
rupt is taken
number refer:
cessor them
ing. N
terru

ter cannot be inhibited by the interrupt priority
mask, thus providing a “non-maskable interrupt” capa-
bility. An interrupt is generated each time the interrupt
request level changes from some lower level to level
seven. -

£

2.224.2. Hardware Support

On-chip logic provides detection and comp_arison of in-.

terrupt requests. Arrival: of interrupt requests does not

|ned by the interrupt Ievel,

level seven is'a special case. Level seven in-

affect execution of the current instruction. If an interrupt
of sufficient priority arrives, a pointer to the interrupt mi-
cro routine will be substituted for the micro routine
pointer from IR decode at the next macro instruction
boundary. An interrupt acknowledge is accomplished by:
the interrupt micro routine via an internal path involving
no less than six separate registers. Support for translation
and extension.of interrupt vector addresses and creation
of interrupt auto vector addresses is the responsibility of
the field translate hardware in the MC68000. The micro
routine uses the address from this special-function_uni
as a pointer to the location of the program co
the particularinterrupt. Vectored, auto vectored

tine;- the: differences occur in vector ge
field translate unit.

2225.1. Descrlptlon
Traps are exceptions cau:
either from processor rec
during instruction exe
whose normal behawior is trapping.
Some instru
traps. The TRA

. The divide instructions will force an exeeption if
wision operation is attempted with a divisor of zero.
dllegal instruction is the term used to refer to any of the

“"word bit patterns'which is not the bit pattern of the first

word of a legal MC68000 instruction. Those word patterns
with' bits [15 12]=1010 or 1111 are distinguished as un-
implemented instructions, and separate exception vec-
tors are given to these patterns to permit efficient emu-

- lation. If: during- instruction execution. such .an illegal
. instruction is fetched, an illegal instruction exception oc-

curs. This facility allows the operating system to detect
program errors, or to. emulate unimplemented instruc-
tions in software.

In.order to provide system security, various.instructions
areprivileged. An attempt to execute one of the privileged
instructions while in the user privilege state will cause an
exception.

"Toaid in program development, the MC68000 includes
a facility to allow instruction by instruction tracing. In
trace state, after each instruction is executeq an exception
is forced, allowing a debugging program to monitor the
execution of the program-under test.

Thetrace facility uses the T-bit in the supervisor portion
of the status register. If the T-bit is off (0), tracing is dis-
abled, and instruction execution proceeds from instruc-
tion to instruction as normal. If the T-bit is on (1), at the
beginning: of the execution of an instruction, a trace ex-
ception will be generated after the execution of that in-
struction .is completed. If the instruction is not executed,
either because an interrupt is taken, or the instruction is
illegal or:privileged, the trace exception does not occur.
If the instruction is executed and an interrupt is pending
on completion, the trace exception is processed before




the interrupt exception.: If the instruction generates an
exception, the generated exception is processed before
the trace exception.

As an extreme illustration of the above rules, consider
the arrival of an interrupt during the execution of a TRAP
instruction while tracing is enabled. First the trap excep-
tion is processed, then the trace exception, and finally the
interrupt exception: instruction execution resumes in the
interrupt handler routine.

2.2.2.5.2. Hardware Support

Trace, privilege violation, illegal instruction, and all in-
structions which cause a trap-are handled in much the
same fashion as an auto vectored interrupt by the hard-
ware. They all share {(except for some small initial differ-
ences) a single micro routine, Again, as with interrupts,
the field translate unit provides the vector address for the
program counter. The decode of an illegal instruction, or
a privileged jnstruction in user mode causes the macro
instruction decode logic to generate a pointer to a special
micro routine which returns the machine to supervisor
mode and effects a trap. Considerable additional hard-
ware is required to detect these errors and to create the
address. of the exception vector; and increased control
store space is necessary for the special micro routine.

2.2.2.6. Bus Error/Address Error

2.2.2.6.1. Description

Bus Error exceptions occur when external logic re-
quests that a Bus Error be processed by an exception
The current bus cycle which the processor is making i
aborted. Whatever processing the processor was doing
instruction or exception, is terminated, and the pr T
immediately begins exception processing.

Exception processing for Bus Error follow:
sequence of steps. The status register is ¢
pervisor state is entered, and the trace sta
The vector number is generated to refi
vector. Since the processor was n
when the Bus Error exception re
text of the processor is more
this context, additional in
pervisor stack. The progra
status register are of ca
formation, the processor
first word of the |
dress which was

n instructions
s made, the con-
. To save more of
‘ is saved on the su-
tinter and the copy of the
aved. Besides the usual in-
es the internal copy of the
ion being processed, and the ad-
ccessed by the aborted bus cycle.
pecific information’ about the access:
ead or a write, whether the processor
ng an instruction or not, and the classifica-
ed on the function code pins when the Bus
surred. Although this information is not sufficient
eraI to effect full recovery from the Bus Error, it
allow software diagnosis. Finally, the processor
commences instruction processing at the address con-
tained in the Bus Error exception vector.

If a Bus Error occurs during the exception processing
for a Bus Error, Address Error, or Reset, the processor is
halted, and all processing ceases. This simplifies the de-
tection of catastrophic system failure, since the processor

removes itself from the system rather than destroying all
memory contents. Only the RESET pin can restart a halted
processor. '

Address Error exceptions occur when the processor at-
tempts to access a word or a long word operand at an
odd address. The effect is much like an internally gen-
erated Bus Error, so that the bus cycle is aborted, and the
processor begins exception processing. After exception

_processing commences, the sequence is the same as that
. for Bus Error, except that the vector number refers to the

Address Error vector. Likewise, if an Address Errorccurs
during the exception processing for a Bus Er
Error, or Reset, the processor is halted.

2.2.2.6.2. Hardware Support
During execution of a micro r
counter value is often moved
where it is manipulated. An
counter is returned to the p
to the end of the micro 6
tain from one to five
efficient to attem
program counter th
currence of a g
the curre

m counter register prior
Macro instructions con-
d it is not convenient or
intain an updated value in the
'hout all micro routines. Since oc-
exception truncates execution of
utine the internal state of the exe-
cution . most importantly, the program counter
{which: ed during exception processing) are not
well:defined for the current implementation. Conditions
tocessing a Group 1 or a Group 2 exception are such
program counter is always well-defined.

.2.3. Multiple Exceptions

~2.2.3.1. Description

This section describes the processing which occurs
when multiple exceptions arise simultaneously. Group 0
exceptions have highest priority; Group 2 exceptions
have lowest priority. Within Group 0, Reset has highest
priority, followed by Bus Error and Address Error. Within

‘Group 1, trace has priority over external interrupts, which

in turn takes priority over illegal instruction and privilege
violation. Since only one instruction can be executed at
once, there is no priority relation within Group 2.

The. priority relation between two exceptions deter-
mines which is taken, or taken first, if the conditions for
both arise simultaneously. The description above of the
tracing a TRAP instruction when a interrupt arrives is an
example of the application of the priority relation. In an-
other example, if a Bus Error occurs during a TRAP in-
struction, the Bus Error takes precedence, and the TRAP
instruction processing is aborted.

2.2.3.2. Hardware Support

It is possible for several exception conditions to be
present at once. An exception priority network is used to
provide hardware arbitration among multiple exception
conditions which can occur. The network keeps track of
the arrival and status of exception conditions, forms the
micro control store starting address for the highest prior-
ity exception condition, and generates the address sub-
stitution signal at the appropriate time.




‘3. Summary and Conclusions

- The MC68000 is a register oriented architecture with
system features provided by carefully defined privilege
states and exception processing. The privilege states di-
vide processing into user and supervisor modes, with
additional protection provided by functional separation
of program and data space. Exception processing is de-
fined to divide exception conditions into three' logical
priority groupings according to the manner in which they
are handled by the hardware. In addition, a complete hi-
erarchy is specified for hardware action in processing of
multiple exceptions. ‘

The two level microprogrammied control unit which im-
plements the MC68000 architecture accommodates the
priority groupings for exception conditions fairly easily.
Additional hardware is required to provide support mech-
anisms associated with privilege states and exception
vector generation. A priority encoder.and extra logic are
required to implement the hierarchical treatment of mul-
tiple exception conditions. Additional width in the nano
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Instruction Prefetch on the MC68000

The MC68000 uses a two-word tightly coupled prefetch
mechanism to enhance performance. This mechanism is
described in terms of the microcode operations involved.

DEFINITION: The execution of an instruction begins
when the microroutine for that instruction is entered.

Using this definition, some features of the prefetch,

mechanism can be described.

1) When execution of an instruction begins, the opera-.

tion word and the word following have already been
fetched. The operation word is in the instruction
decoder.

2} In the case of multiword instructions, as each addi-
tional word of the instruction is used internally, a fetch
is made to the instruction stream to replace it.

3) The last fetch from the instruction stream is made
when the operation word is discarded and decoding
is started on the next instruction.

4) If the instruction is a single word instruction causing
a branch, the second word is not used. But because
this word is fetched by the preceding instruction, it is
impossible to avoid this superfluous fetch. In the case
of an interrupt or trace exception, both words are not
used.

5) The program counter points to the last word fetched.

from the instruction stream.

ORG 0;
DATA.L
DATA.L

ORG
DATA.L

ORG
NOP
BRA
ADD

BEGIN:

xxx.L 1;0 yyy.L;

FIGURE 1. CONTENTS OF MEMORY

Literature Distribution Centers:

The following example illustrates many of the features
of prefetch. The contents of memory are assumed to be

as illustrated in Figure 1.

The sequence we shall illustrate consists of the
up reset, the execution of NOP, BRA, SUB, the

yyy.L. The order of operations described wi
croroutine is not exact, but is intended f

poses-only.

Microroutine Operation Operand
Reset Read SSP High
Read SSP Low
Read 4 PC High
6 PC Low
(PC) NOP
+(PC) BRA
NOP +(PC) ADD
#<begin BRA>
PC=PC+d
Read (PC) SUB
Read +(PC) DISP
<begin SUB>
Read +(PC) CMP
Read DISP (A0} <sr¢>
Read +(PC) SGE
<begin CMP>  <take INT>
INTERRUPT  Write —(SSP) PC Low
Write —(SSP) PC High
Read <INT ACK> Vector #
Write —(SSP) SR
Read (VR})- PC High
Read +(VR) PC Low
Read (PC) MOVE
Read +(PE) xxx High
<begin MOVE>
MOVE Read +(PC) xxx Low
Read +(PC) yyy High
Read XXX <sr¢>
Read +(PC}) yyy Low
- Read +{PC) NOP
Write YYy <dest>
Read +(PC) SWAP
<begin NOP>

FIGURE 2. INSTRUCTION OPERATION SEQUENCE
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