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This paper considers microprogramming as a tool for

.,*+.’i*’
circuit size, circuit speed, interconnecti~~~~~plexity and

implementing large scale integration, single-chip micro- package pin count. The implications @~t~s~ constraints
processors. Design trade-offs for microprogrammed con- on the structure of a microproces~r c&w~Folunit and its
trol are discussed in the context of semiconductor design microcode are explored. .’t:.:’i,:,,,.:~r,

constraintswhich Iimitthe size, speed, complexity and pin-
‘t:i ..i*J,,‘.;,>:l,,,~,,,:,

.l;$,. .,,,.>.

out of circuits. Aspects of the control unit of a new gen- LSI SEMICONDU*:~*TECHNOLOGY
eration microprocessor, which has a two level micropro-

..:<1..*;
Though progressing “~~ay, LSI technology still im-

grammed structure, are presented. poses strict constr~J@& ofi~the microprocessor designer.
J,,*.,,:~::...~;,,),)

INTRODUCTION
..,,.>‘\y,$>

tircuit Sizea[d”~dfisity
The field of single-chip, large scale integration (LSI) mi- There is aj~@~80nstant bound on the size of LSI chip

croprocessors is advancing at an incredible rate. Progress that canlbe e’~nomically produced. Even though circuit
in the underlying semiconductor technology, MOS, is densiti&&t~re improving, at any given time there is a limit
driving the advance. Every two years, circuit densities are on ,$S&$~uhber of gates that can be put on a chip. The
improving by a factor of two, circuit speeds are increasing
by a factor of two, and at the same time speed-power ‘

mw,:~nstraint on an LSI designer is to fit his design
“~p fixed maximum number of gates.

products are decreasing by a factor of four. Finally, yield
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enhancement techniques are ‘driving down producti~n $ tircuit Speed
costs and hence product prices, thereby increasinq,d&.h:,,
mand and opening up new applications and mar~$$$j:, ‘“

As with circuit density, the LSI designer has a fixed

One effect of this progress in semiconducto,~t~c~o]-
maximum circuit speed with which to work. Speed is lim-

ogy is advances in LSI microprocessors. Th~{~@s: gen-
ited primarily by the power dissipation limits of the semi-

,S1.x.i,~
eration, currently being introduced by sev~!bpanies, conductor package. The problem is compounded by the

~,,,~t.!y.\,.&
is an order of magnitude more powerful, tR@~# previous

fact that the processor technology and main memory

generation, the 8-bit microprocess~{~~[~three or four
technology in microprocessor applications are the same.

years ago. The new microproces$~rs ~$ave 16-bit data
The speed gap between ECL logic and core memory en-

paths and arithmetic capabili~?!;i%$@~’’directly address
joyed by the large computer designer is not available to

multiple-megab~e memori~%~~k~~?ms of functional ca-
single-chip microprocessor designers.

pability and speed they wit~~u’~~perform all but the high
lnterconneti Complexityend models of current,}6,-blt ‘dfnicomputers.

As LSI microproce*~$$+@h nology matures it becomes Internal interconnections on an LSI circuit often take as

feasible to apply tr@~,~oRal implementation techniques, much chip area as the gates they connect. Furthermore,

that have been R$$~e~?n large computers, to the design the designer does not have the option of running jumper

of microcom~:$@:’~Sl microprocessor design is now at wires across his circuit when he runs out of sutiace area.

the stage #~e$~better implementation techniques are In some cases, it is cheaper to duplicate functions on

require@&+@&&er to control complexity and meet tight various sections of the chip than to provide connection

desig*@%dules. One such technique, microprogram- to a single centralized function. Another implication of

mi~@,J~e subject of this paper. Most of the traditionally the interconnect problem is that regular structures, such

clalm#d benefits of microprogramming, e.g. regularity (to as ROM arrays, can be packed much more tightly than

decrease complexity), flexibility (to ease design changes)’ random logic.

and reduced design cost, apply to the implementation
problems facing today’s LSI microprocessordesigner. Wn-Out

This paper describes the control structure of one of the Semiconductor packaging technology limits the num-
new generation, single-chip microprocessors, the ber of connections an LSI chip may have to the outside
MC68000 processor from Motorola, with special attention world. Common packages today have 24 or 40 pins; 48

0

to the constraints which LSI ‘technology imposes on pro- and 64 pin packages are considered large. The pin-out
cessor implementation. There are four such constraints: limitations can be overcome by time multiplexing pin use,
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but the resulting slowdown is usually not acceptable.
Another constraint on LSI designers, not inherent in the

technology, is the intensely competitive climate of the
semiconductor industry. During the development of any
new product it is likely that other companies are working
on comparable products. Furthermore, the first product
available, of a given type, usually gets the largest share
of the market. This situation places LSI designers under
tight schedules. Any techniques for reducing product de-
sign times can affect product success.

CONTROL UNIT DESIGN TWDEOFFS

Combinatorial Logic versus Microprogramming

Although previous LSI microprocessor implementa-
tions at Motorola have not been microprogrammed, a
microprogrammed implementation for MC68000 was
considered early in the project. The benefits of micropro-
gramming were convincing enough that once the feasi-
bility of a microcode implementation was established,
the alternative of combinatorial logic implementation
was not seriously considered. This is in spite of the fact
that the implementers’ proven expertise was in combi-
natorial implementations and they had no experience
with microprogramming,

Besides several non-technical reasons for micropro-
gramming (very tight design schedule, limited staff, etc.)
there are compelling technical advantages to ‘micropro-
gramming, especially regularity and flexibility,

The design time constraint appears to be eased by mi-
crocoding. The regular structure of control store, in con-
trast with arbitrar~ control logic, decreases the com~lex-

domly distributed throughout a combinatorial maze with
its associated delay; distribution and regeneration re-
quirements. For instance, accurate delay elements are
difficult to construct on an integrated circuit, which
causes increased tolerances in control signals and slower
clocks for combinatorial circuits.

4

On-Chip versus Off-Chip Control Store

Given the size constraint for LSI chips it would be very
attractive to consider off-chip control store for a micro-
programmed LSI processor. Other constraints m~.k~~his
impractical, however. The pin-out limitation se~}~~Tffi-
its the width of the control word from off:x~:i~~p’htrol
store. This implies that the control unit W~*e must
be vertical. This in turn limits the ov$~~$$~$ed of the
processor since many micro cycles ar#~@~Y?ed in vertical
microcode to implement a single,.~~~tnstruction. The
technology speed constraint ~oe$}:~$@allow brute force
solution to this problem by s~~~ing up the internal cycle
time. Time multiplexing ~;~~~equentially access hor-
izontal micro instructi~Q~: wobld also slow down the,.:,
processor. {++..>,,-’‘*.S:.:,,,,.,:..

The LSI-I 1 from &$%lEquipment Corporation uses
off-chip contro~,ti~re. fie result is a fairly narrow (22 bits)
micro instru.~d$~~is structure causes a fundamental
limitation, ~i”t~~ “~otential speed of the LSI-I 1, as dis-
cussed &j~+SWti%and Siewiorek.7 Because of the above
con~er~.ons an on-chip control store implementation

.j: .

‘~wzontal versus Vertical Microcode
ity of the control unit. This in turn dacreases the design ‘:s’’~’~ The decision to use horizontal or vertical microcode%:,.
time. A more complex controller can be implemented-at,$. ‘a involves conflicting sets of constraints. Horizontal micro-
a given design cost. Regularity of the structure si~,@]fies’ code is indicated for several reasons. Vertical microcode
the layout of the chip. Considerable time savin~~{m-
sibly months) can be realized in the layout step ~Q~*#rors
are less likely. Microprogramming allows3,~~$;p~dcessor
architects to delay binding some decisi~@$,@e the ba-
sic control structure is determined, tQf~~}~ftdesigners
can go to work, even though the awu~, Microcode may
not be written. This reduces the~~%erti? sequentiality of
the design process by allowiw$~~,k overlap of the de-
sign efforts of microcoder~~an~ circuit designers, and
therefore shortens desi~”w.

The regular structu$e @,,$#ntrol store in a microcode
implementation ha~g~eral other benefits. The regularity
decreases the int~~c~~%ction complexity and therefore
the size of th~f~w~pl circuitry. In other words, an array
of read onl~~~$ory cells may take less chip area than
the equi~~~~ combinatorial logic. Also, the regularity of
structu@ fa$i~hates detailed simulation and testing.

T~\_OOO processor is designed to be enhanced
~jt~;~~~ instructions in future versions. Microprogram-
~~~’fiakes it more likely that such expansion will not
in”~olve a major redesign of the chip. The flexibility of
microprogramming can also ease the problems of design
changes and correction of design errors. Some such
changes can be made mereiy by changing the control
store contents with no redesign of the logical circuitry.

Besides regularity and flexibility, microprogramming
provides another benefit. The clocking functions in mi-
croprogrammed control are much cleaner than those ran-

is highiy encoded and requires a significant amount of -

combinatorial Iogicto decode the micro instructions. Hor-
izontal microcode provides fully decoded (or nearly so)
fields which can directly drive the execution unit with little
intervening logic. Vertical microcode also typically re-
quires more micro cycles to emulate a given macro in-
struction. Because of the LSI technology circuit speed
constraint these extra micro cycles cannot be hidden in
each macro cycle by speeding up the internal circuitry.
Thus both the interconnect constraint (elimination of ran-
dom logic) and the speed constraint argue for horizontal
microcode.

On the other hand, vertical microcode has advantages,
the major one being reduction of the size of the control
store, Horizontal micro instructions tend to be very wide
and are often duplicated several times in control store.

One solution is to use a two level control store, or hy-
brid vertical/horizontal structure. This is simiiar to the two
level control proposed by Grasseili.376 In the two level
control structure each macro instruction is emulated by
a sequence of micro instructions. The micro instructions
are narrow, consisting primarily of pointers to nano in-
structions. (Micro instructions also contain information
about branching in the micro sequence.) The nano in-
structions are wide, providing fairly direct, decoded con-
trol of the execution unit. Nano instructions can be placed
randomly in the nano store since no sequential accesses
to nano instructions are required. Also only one copy of

9



each unique nano instruction need be stored, no matter
how many times it is referred to by micro instructions.

The Appendix contains an anal~ic treatment of wo
level control. A derivation of the potential savings in con-

D

trol store space, with examples, is given.
An extention of the two level concept is made in the

Nanodata QM-1.5~6 In that machine a mircro instruction
can specify a sequence of nano instructions. This ,ap-
proach was not taken in the MC68000 for two reasons.
First, the initial microprograms showed that micro se-
quences tend to be very short (one, two, or three micro
instructions), so sequential nano instructions cannot be
used to advantage. Secondly, unless some facility for
nano branches is implemented multiple copies of some
nano instructions must be kept in nano store.

THE MC68000 CONTROL UNIT IMPLEMENTATION
Actual implementation of the general structure derived

above involves many other design problems. The re-
maining sections of the paper discuss the actual imple-
mentation chosen and the design considerations in-
volved. Major problems to be solved were minimization
of the size of control store, speed-up of the control unit,
and reduction of interconnect between the control and
execution units. Control store size was minimized by pro-
viding a suitable micro instruction branching capability
to facilitate sharing subsequences. The control unit speed
requirements made micro instruction prefetch necessary
so that each nano store access’and the subsequent micro
store access are overlapped as much as possible.2 Exe-
cution Unit interconnect is minimized by placing the nano
store directly above the Execution Unit (with s~ace for

The MC68000 processor provides eight 32-bit address
manipulation registers and eight 32-bit data manipulation
registers. Address registers” allow 16- and 32-bit opera-
tions and data registers allow 8-, 16-, and 32-bit opera-
tions. All address and data registers are accessible to the
programmer. In addition, there is a program counter with
limited user accessibility and there are qeveral registers
not available to the user which are used for temporary
storage during instruction execution.

The register file is divided into three sections as shown
in Figure 1. Two buses connect all of the words ire,.@.,$y:.I.),l,..
register file. The register file sections are either ~~i~,~
or concatenated using the hi-directional busC:~~l{t~es.
This permits general register transfer oper$~na~~cross
register sections. A ~mited arithmetic un$t>l$~$&ated in
each segment containing address regi~~~wrds and a
general capability arithmetic and log@~~~~s located in
the data low word section. This a+~o&k,@dress and data
calculations to occur simultan~~ay. For example, it is
possible to do a register-to:~~~~$ word addition con-
currently with a program c~p?q,fihcrement (the program
counter is colocated wit~~~+~~dress register, words. and
carry out from the ariths~~~~unit low is provided as carry
into the arithmeti~~~it,hlgh). Special functional units for
bit manipulatia~;~~~~ng and unpacking data are located
in the data se&o$

Two fact~~$~~~bined to suggest the desirability of the
config~~tio’fi~shown in Figure 1. The first was a very
dens~~~;port static RAM cell which conveniently sup-

PO&eN{@ two-bus structure. The second was the 16-bit
~[~~dth which made 16-bit segmentation of the reg-

“?@s desirable.

B
some decoding). Fields in the nano store are allocated ,,,+ ?’inaddition to the configuration of the Execution Unit,

such that control store output lines are close to the ,~~~ ‘ other factors contributed to the design of the control unit.

responding Execution Unit control points. <~p,, The instruction set was specified and considered frozen.‘~..y:,
The MC68000 control unit supports an instr~;@~&t The first version assumed that op codes and instruction

which consists of general single and dual,~,~+~~~:~’din- formats would remain static as defined, though holes

structions involving byte, word (16 bits), $r:~$~~ word were Iefi in the original op code space to allow planned

operands. Operations are generally m~w~$~-register, orderly expansion of the available instruction set.

register-to-memory, or register-to-r~i~~e~ with some Restriction to fixed instruction formats has several im-

notable exceptions such as the geR@&l~&@’kory-to-m em- portant consequences:

ory move. In addition to stan@,#i~@ructions such as
add, compare, and shifi; the ~C6&OO0 processor is de- 1. Certain fields, such as register designators, can be
signed to support such inst@’~~&as load and store mul- extracted directly from known positions in the in-
tiple registers, pack (AS,$llR~~ltiply and divide, and var- struction. This tends to reduce control store size and
ious forms of bit maq,~~lation. simplify instruction decoding.

.;, ~,.,* l:>.$..k,;:,/..=:..<..:.$..,,. +;.x>,.., -
‘*Ji;~@.~$fSSBUSHIGH ADDRESS BUS LOW ADDRESS BUS DATA

,~!::$

lBt 1“ 1’~J/,,\ \ @t,\i,z/:..,.< :.:$t$\,,:)’t,?;,.
ARITH- ARiTH- SPE- ARITH-

!;J,?~{~.i!.. ,) ADDRESS & DATA
METIC

ADDRESS REGISTER DATA REGISTER CIAL METIC~<..=:.S.,,, REGISTER HIGH WORO METIC
‘:y$ LOW WORO LOW WORD FUNC- AND
-,:. (16 BITSI :1~

UNIT
LOW (16 BITS) (16 BITS) TION LOGIC

UNITS UNIT

I OATA BUS HIGH

B FIGURE 1. MC68000 EXECUTION UNIT GENERAL CONFIGURATION



2. Register selection and ALU functions tend to remain
unchanged for the duration of a single instruction
execution. These register designators and ALU func-
tions can be extracted from the instruction (de-
coded, if necessary) and routed directly to the ex-
ecution unit, bypassing the control store.

3. The control store need only contain information
about when a register is read or written or when the
ALU should operate.

Taking advantage of these obsetiations can lead to sim-
plification of the control and reduction of the required
micro control store size.

oINSTRUCTION
REGISTER

I
t

INSTRUCTION
> CONTROL

DECODE STORE

A simplified block diagram of the MC68000 control
structure, shown in Figure 2, illustrates an application of
the above observations to the controller design. The basic
idea is to extract from the macro instruction word all in-
formation which is macro instruction static; that is, in-
formation which does not depend on timing during the
instruction execution for its usefulness. Signals which are
not timing dependent bypass the control store and act
directly on the Execution Unit.

In a typical microcontrol implementation, the instruc-
tion Decode provides a sta~ing address to the,~~trol
Store, The Contrpl Store generates a sequenceQW~~Wol
signals, for the Execution Unit, and its OW$ ti@’’state
information. Branching is accomplished~’~~~,f~edback
from the Execution Unit to alter the next &~}hformation
into the Control Store. At the end,~~,f~~~ution of the
macro instruction, the Control S~W@<Cadses loading of

~~~~v< “.s
the next macro instruction into ‘“

Y
. e,:~struction Register

and transfers next state contrdl.to t”6 Instruction Decode
unit,

i:‘3..:$>., ~$%,,.. *,,.‘*t!,s,.
Traditional impleme~~~~~$f the MC68000 control sec-

tion using a ‘single C~Q*~tore with internal state se-
quencing informatf$~ws investigated. It was found to
be impractical,wau~e the control store was too large
for a single c~~~~hlementation. Methods for reduction
of the total{to~’til store area required were considered.
It was ~~~~ti%d that necessary control store area could
be s$bswntially reduced through the use of a two-level
cq~,~l store structure. The structure selected for the

$WWO control unit is shown in Figure 3.
EXECUTIONUNIT

I

~~jh.Ida two-level structure, the first level (micro control.>.,!,,.?>,
.$~,,l:,?:,$tore)contains seauences of control word addresses for

FIGURE 3. MC68000 CONTROL STRUCTURE



of addresses into the nano control store. The nano control about 280 different control words used. A single level
store contains an arbitrarily ordered set of unduplicated implementation would have required about 45K control
machine state control words. Thepracticality of this struc- store bits, while the two level structure uses only a little
turefor space reduction rests on two mutually dependent more than half as much.

B

assumptions. Another parameter which can have a significant effect
First, the number of different control states actually im- on control store size is the extent to which the control

plemented is a small fraction of the number of possible word is encoded. In a two level control structure, each
control states. For example, a reasonably horizontal con- contro’1 word in the nano control store is uniquely rep-
trol word for the MC68000 Execution Unit contains about resented by an address in the micro control store. The
70 bits, implying a possible 270 different control words. address in the micro control store could be consider~d
Most of the possible control states are not meaningful to be a maximal encoding of the control word be~~$~+k
for macro instruction execution. The implementation of there is a one-to-one correspondence between&@Wi~~e
the complete set of macro instruction sequences for the control words and unique addresses in the mi~~*$.@~@rol
MC68000 processor requires only about 200 to 300 (< 2g) store address sequences. (The nano contro~~p~~could
unique nano wo’rds. This set of nano words is a very small be viewed as merely an orderly .metho~:~~~$nslating
fraction of the set of possible states. Nano words are maximally encoded state information ~s~$~ignificantly
uniquely specified by no more than nine bits of address. more horizontal format.) At the ot$~rwme, one bit
As a result, words in the micro control store address se- could be allocated in the control ~,~r*@each switch, or
quences need only allocate nine bits for each nano control control point, that must be driw:~ the Execution Unit.
store address. If the control word is enco,~~+,p~~”decoding logic nec-

Second, there must be some redundant use of the nec- essary between the contr::l~::@b$eoutput and the Execu-
essary control words to realize a reduction in control store tion Unit must be cons~~~w~!th respect to both timing
area. If there were a one-to-one correspondence between and space constraints. “$%,‘“
n’anq,control store addresses” in the micro control store In the MC6800Q:~@~rol unit, bits in the nano control
and control words in the nanocontrol store, then the nano store are assi-~’’~$nerally on a functional basis with
address in the micro instruction could be replaced by the individual s~~~,~l$$ assigned to specific control subfunc-
contents of the addressed nano instruction and the ad- tions. For ~,~p~e, separate short control fields are as-
dress bits eliminated. If, however, there are more ad- signe~,.+?bpt~ram counter control and arithmetic and
dresses in the instruction sequences than there are logi~<~$$k:~outputcontrol.
unique control words, a reduction in total control store , @t~ a specific subfield the control bits are encoded
size may be possible. (For a heuristic derivation of these ,,&i~~W& minimum bits necessary to provide the required
dependencies and possible advantages, see the appen- *Y~bWunction states subject to the constraint that the de-

D

dix.) In the MC68000 control unit, for example, each dif- ,,@ c~de to individual control lines involve no more than ap-
ferent control word is used an average of between MO ‘ proximately two logic levels. Some space is necessary

between the nano”control store output and the Execution
Unit contrdl points for alignment of the control store out-
puts with their respective control points and to combine

: E >
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certain timing information with appropriate control point
variables. Within this space it is possible to provide min-
imal decoding at very little cost in additional area while
the signal encoding in the nano control store saves con-
siderable nano word width and, hence, total storage
space required. In the MC68000 control unit the nano
word width is approximately 70 bits, while the Execution
Unit contains about 180 control points.

The decision to implement the MC68000 control unit
using a two level storage structure was based on mini-
mizing control store area. Although necessary control
store area was significantly reduced, introduction of the
two level concept created several problems,

One problem with a two level control store is that ac-
cess to a memory is not instantaneous and in a two level
structure the accesses must be sequential. The alterna-
tive, combinatorial decoding, does not proceed in zero
time either, which partially compensates for the extra
memory access. Further compensation for the extra ac-
cess time requires complex control timing techniques
such as instruction prefetch, access overl,ap, and multiple
word accesses.

Another problem associated with a two level structure
is the delay associated with conditional branching.
Viewed in a strictly sequential fashion, a condition set in
the Execution Unit must affect the selected micro control
store address sequence which, in turn, affects the nano
word selected. The nano word selected ultimately causes
actions which can be dependent upon the value of the
tested combination. Techniques used to minimize the se-
quential nature of this type of delay include physical or-

store, the average micro instruction sequence encounters
some Qpe of branch at about one out of every two nano
addresses. Implementation of efficient branching mech-
anisms is critical for providing fast execution times with
a microprogrammed structure. The details of the branch-
ing mechanisms are, however, very specific to a partic-
ular implementation and are, therefore, not relevant be-
yond the general considerations already presented.

OTHER ISSUES c\.\x,l,
Minimization $J,$<,.,,.,’~,::..!$t.i,,:1+.t..>,

Special care has been taken during the mic&p&$bm-
ming to detect duplicate nano instructions. %~wh that,
in some cases it has been possible to r@~~$micro se-
quences, delaying or anticipating so~$$~c~d%s, so as to
use previously created nano instr,~~~~: For instance,
operands are moved into tempor%~< ~~gisters early in in-
struction execution. This ten~,~$~o fi~ke subsequent ex-
ecution cycles more inde~,~~@@t of operand sources
and, hence, improves t~”~:~ti~ce for common nano in-
structions. Each uniqu~:~~~:yfnstruction that can be elim-
inated reduces nand~- size.

Micro store :i:,%$is fiinimized by careful detection of
subsequences a$..%tio instructions; for instance, those
for address+ga?b’?~tions, or storing results.

,$$$‘$%.?

sim$i$~j.of Structure
F#~er and Miller2 argue that simplicity of structure

~~~ “microprogramming easier. The MC68000 arith-
1+,~eti~ and register unit (the Execution Unit) is quite sim-

gatization of words wit~n both control store levels and ‘~~$~~~~:all resources (re9isters, temporaries and functional
simultaneous access to more than a single control store . ‘“$units) are tied to each of the two internal buses. This -

word. For example, an access to a row of nano{~ore”

(containing multiple nano words) can be initiat~@s~y
in a cycle, with subsequent single-word select~,.~sed
on conditional branch information. Also, in,@,@~cases,~.::,:.,>,
probable outcome of a conditional bran~J&~rs one
branch more than another. In such an i,~,Q~, it maybe
possible or even desirable to prefet~h’’$~~uction words
associated with the most likely br~h$~hdition, The best
example of the usefulness of th$. i~a is its application
to a decrement and branc~~~~~>dro type instruction.
Branching is heavily favx:~~d a prefetch at the des-
tination location can gr~~l~~minimize execution delays
associated with looRFti8. ‘“:’

If common micre’’%@ction routines, such as the ad-
dress calculati~,~~~ti~es, are to be shared among sev-
eral macro imt~ctihns, then mechanisms must be pro-
vided wh,is$~$ti~itate functional branches for both
enterin@$fi~J%ving the common routines. Care must be
takenswd delays associated with functional branches:}‘ .+}:
in awfwel store, especially when the common routines
a@:,@H (making it more difficult to overlap accesses to
dl~rent routines in different control stores).

the capability to petiorm direct branches in the micro
control store allows various macro instruction sequences
to share common ending routines. It also permits more
flexibility in organizing the micro routine sequences
within the control store address space.

Branching mechanisms are mentioned here because
they occur very commonly. In the MC68000 micro control

structure simplifies microprogramming, since all trans-
fers of information use the same mechanism. 4

Generality of Structure

Frieder and Miiler2 also call for generality of structure.
This is probably important for general purpose emula-
tion. In the MC68000 processor the architecture is known
and fixed. Various non-general assumptions were made,
for instance, about macro instruction decoding and the
location of register fields in macro instructions. Because
of the strict technology constraints, the control structure
is optimized for emulation of a single architecture.

User Microprogramming

Current technology requires that large on-chip control
store be implemented in ROM, which is much denser than
alterable memory. Technology advances will certainly
ease this requirement in the near future. Single-chip com-
puters have already been built with small on-chip alter-
able memories. Clearly, custom microprogramming, user
microprogramming and dynamically altered micropro-
grams will be feasible on LSI microprocessors in the
future.

SUMMARY
Microprogramming is a viable tool for implementation

of LSI microprocessors. The current state of the art in
semiconductor technology places certain constraints on

4



the size, speed, interconnect complexity and pin-out of
today’s integrated circuits, These constraints affect the
form of microprogrammed control that can be used. The
structure described here: two level, overlapped, hybrid

D

vertical and horizontal microcontrol, implements a new
generation. microprocessor within these constraints.
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micro control store of .k ~&@iinstructions with a nano
address ([log2v]bits) an~!~~xt micro instruction address

([log2klbits). Th~$~~o cbntrol store has v (= pk) nano
instructions, e~.;~~~aining a control state (n bits).
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Simplifying (4) gives: hample
[log2kl + [log2p] + np < n (5) In typical microprogrammed machines, n (the width of

Solving for n and k in (5) gives the result that two-level the horizontal control word) varies from 20to 360. k varies

store is smaller than single-level control store if from 50 to 4000. Typical values for p are not known.
In the MC68000 microprocessor

n > [log2k] + [log2p]

l–p

or

k<; 2n(l –p)

(6)

(7)

n=
k=
p=

SI =

S2—=
SI
AS =
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Design and Implementation of System

D Features for the MC68000
MOTORO~ Semiconductor

Austin, Texas

ABSTRACT
~~~~.~

(10-12) appear in the upper system byte. The cond~~~i

‘The MC68000 combines state-of-the-an technology, codes appear in the lower user byte: extend (X), #~@%

advanced circuit ,design techniques, and computer sci- (N), zero (Z), ovetilow (V), and carry (C). \*{k:J+,,92$$~

ence to achieve an architecturally advanced 16-bit micro- MC68000 memory is organized as 16-b~~~*;ds, ad-
processor. The processor is implemented by a micropro: dressable to 8-bit bytes. All address c,~~u~ons are
grammed control of an execution unit. The processor done to 32-bit resolution, but only th@\f~&@?der 24 bits
incorporates advanced system features, including multi- are brought out due to pin count li@:~at\~ns.
level vectored interrupts, privilege states, illegal instruc- ; ~::,, ;.,,

.:!.,“$;*,
tion policing, and bus cycle abort. This paper discusses 1.2.Instructions .’,,i~<‘~::;<:;:t::%,:..

the implementation of the system features and the influ-
‘~’”.,?t..>,,~$+.

The MC68000 supports?&{@ ba31c data types with six
ence of the implementation method on the processor basic types of address~n$k<,~@~6 instruction types. The
design. supported data types aR@-hk, BCD digits, bytes, words,

and long words. ~fi~,ba”~c address types include reg-
1.MC68000 Overview ister direct, regi%tti~7flWrect, absolute, immediate, pro-

1.1.Resources gram counter~la~~~, and implied. The register indirect

Hgure 1 shows the register resources of the MC68000
microprocessor. The first eight registers (DO-D7) are
used as data registers for byte (8-bit), word (16-bit), and
long (32-bit) data operations. The second set,of nine reg-
isters (AO-A7, A7’) are used as address registers, sup-
porting both software stack operations and base address-
ing. There is a separate 32-bit program cou’nter and a 16-
bit status register.

,+,:.
.,*.;.,*$-.l.{:${,,

Figure 2 shows the format’ of the status registe?k~~h~~
trace control (T), supervisor/user (S), and lnter$ym~sk

>,,:b;:;>*:
31 16 15 a7

I “
Q.%~~y

*
I ~ ,“:< pE;HT
I “s”~ “~3

,1
I ..*” + ~4 DATA,:* $.,~<:’

— D5 REGISTERS

I .<:%$;””$ ❑ D6
‘+,,4.<.~~ D7

31 16 l&r,& .0
,,,r$p,,t’” AO

— Al
:~~y M

,.:i,\~‘y~s”’l
A3 NINE

~)’
I

A4 ADDRESS/STACK
4::*\ ~,..’~ ~~.\*..\;:<,..,.>::,* .~, ,, A5 REGISTERS,\;...

\\. ‘.:,.~>~>,,a,‘.,.,,,,. J — A6——— —__ —
$Rr:i- USER STACK POINTER

L %tr SUPERVISORY STACK POINTER

— Al

~———— —— ___ J ‘7’

~ :::

~ ~~:R

BYTE BYTE

addressinqf*&&&& include the capability to do post-
increm~t,?’~,edecrement, displacement, and indexed/,,.
addr@S~g. Instruction categories include data move-
m@~~ri*metic operations (add, sub, multiply, divide),
l~$$~~$operations (and, or, exclusive-or, not), shift and

$?@@te operations, bit manipulation instructions, pro-
Q&m control, and system control instructions.,$::)

.e

1.3.Structure

To convey an understanding of the relationship be-
tween system features as desired (originally specified)
and as ultimately supported, it is necessary to first de-
scribe the philosophy of the control structure which will
provide the background for implementation tradeoffs.
The MC68000 uses a microprogrammed control unit
which is tightly coupled to the execution unit and the bus
interface. (The control structure and execution unit are
described in greater detail elsewhere [2].) Tight coupling
permits full overlap of fetch, decode, and execute cycles.
Overlap of these processing phases has impact on im-
plementation of system features in the MC68000.

SYSTEM BYTE USER BYTE
~~

) FIGURE 1. MC68000 REGISTERS FIGURE 2. MC68000 STATUS REGISTER FORMATD ..........
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A basic block diagram of the two level control structure F3 F4 F5 F6 m
used by the MC68000 is shown in Figure 3. The micro D2 D3 D4 D5 D6

control store contains a set of routines. Each routine is a El E2 E3 E4 E4 E4 E5

sequence of micro orders which implements a macro in-
struction or a portion of a macro instruction (such as an FIGURE 4. SIMPLIFIED INSTRUCTION
addressing mode). The macro instruction register decode EXECUTION SEQUENCE
(Instruction Decode) provides a starting address to the

micro control store which subsequently provides its own
next addresses for a sequence of micro orders which per- As an example, assume a simple sequence of single
forms operations required by a particular macro instruc- word instructions as shown in Figure 5. It is the respon-
tion. Each micro word contains an address which is used sibility of the micro routine for the subtract instrucd~~ to
to reference a word in the nano control store. The nano ensure that the add instruction is placed into l~,,*+3tif-
control store contains the set of unique control words ficient time to decode and that a fetch is +@~j$/~ the
which is required to support the entire instruction set. word following the add instruction. Eve~llF~.~&J#ubtract
Words in the nano control store are field-encoded such instruction consists of multiple words<(~%~hal words
that with two to three levels of decoding they will directly might contain an immediate value, ~~~la’~’ment, or an
drive control points in the execution unit. To aid in re- address) the above stated constr~jm~~~$’’apply. The mi-
ducing the size of the control unit the MC68000 employs cro routines will make as many,acx~s to the instruction
a residual control technique [1]. Information which re-

\.,;l~,
stream as there are words i~ @e definition of the asso-

mains static for the duration of a macro instruction is held :$;*s,;:~,.
ciated macro instruction:i~$,$$~sses will, however, be

in a register (not translated through the control stores) skewed forward by tw~$~or~ to provide the necessary
so that space in the control stores is reserved for infor- overlap. ..+~*~~:.:.‘ ,’.~..$,.)$
mation which changes from micro cycle to micro cycle..

,~~<.,.’;:.,l..*,>,~J:j,l,’

A simplified view, as illustrated by Figure 4, assumes
‘..,t,‘“*

,,?:&~<‘.’=-

that instructions exhibit only fetch, decode, and execute
.,,i>$:,,.,\ ,,,....,,,.:~?,,,,~.i,. SUB.,+>,t..:,:,:+;:t,.

cycles. The boundary between macro instructions is con- .~.. S*S~*:$\.,. ADD
trolled by the execute cycle (which may require several

.:\,,,\~r+~?,8:? .\.*<\. CMP
,:!:*J*,*<.$

machine cycles to complete). The basic philosophy of the ~l..\++,\.,y
control structure is that fetch, decode, and execute cycles

,,,,,,\
~.~.:,.,,, FIGURE 5. SIMPLE SEQUENCE

will be overlapped across every macro instruction bound-
?J$$.,.\*\yc,,

:y >:+ OF INSTRUCTIONS
ary. This implies that the micro routine for each macro :>:.4~:~}

:’, >.*,$J,4?>
instruction must insure that:

.:)>::,:.:......y,,,\.*’,-.,,.!..

1“)The next macro instruction word is accessed with suf~$
ficient time to be fully decoded by the end of t~~ cur-
rent macro instruction. “ “$$t;k+,J},

\,
2) The word following the next macro iosm~~n is

fetched by the end of the current mac~~jtikt~ction.
*$$+ ,.~~~’m::.,>,\f,.)f“

MICRO
CONTROL

(
STORE

+ OTHER
INFORMATION

,,$::,{,,!.
,$

INSTRUCTION

REGISTER

EXECUTION

I UNIT I

FIGURE 3. BLOCK DIAGRAM OF
THE MC68000 CONTROL UNIT

.
The MC68000 includes features beyond efficient in-

struction execution. It also has system features for easier
program and memory management, and for handling of
exceptional conditions.

2.1. Privilege States

The MC68000 processor operates in one of two states
of privilege: the “user” state or the “supervisor” state.
The privilege state determines which operations are le-
gal. It is used to choose between the supervisor stack
pointer and the user stack pointer in instruction
references.

When the processor starts a bus cycle, it classifies the
reference via an encoding on the three Function Code
pins. This allows external translation of addresses, con-
trol of access, and differentiation of special processor
states, such as interrupt acknowledge.

Table 1. Classification of References

Function Code Reference class

000 (Reserved)
001 User Data
010 User Program
011 (Reserved)
100 (Reserved)
101 Supervisor Data
110 Supervisor Program
111 Interrupt Acknowledge

4



2.1.1. Supervisor/User State manipulation of the user stack pointer while in supervisor

For instruction execution, the supervisor state is de- mode. This further complicated the register decoders and

termined by the S-bit of the status register; if the S-bit is forced introduction of an additional specialized decoder

on, the processor is in supervisor. state, otherwise, it is for explicit control of the user stack pointer while in su-

in the user state. The supervisor state is the higher state pervisor mode.

of privilege. All instructions can be executed in supervisor The function code pins are employed to classify pro-

state. The bus cycles generated by instructions executed cessor bus cycles. Two bits in the micro control store

in supervisor state are classified as supervisor references. classify an access as data space, program space, interrupt

While the processor is in the supervisor privilege state, acknowledge, or unknown. The unknown state is com-

those instructions which use either the system stack bined with a value from a special decoder to determiq~

pointer implicitly or address register seven (A7) explicitly whether the associated access is to data or pro~$~~$:.
“’.},..

access the supervisor stack pointer. space. Unknown states occur in micro routine~’~~~~

The user state is the lower state of privilege. Most in- may be shared by data space access macro i~~~~~dns

structions execute the same in user state as in supervisor
~., ~$,,~:.~

and instruction space access macro instruc~~~~.~or ex-

state. However, some instructions which have important ample, the base plus displacement ad~?~s~~~ mode

system effects are made “illegal.” For example, to insure (data space access) and the prograrn.,$~~$~er plus dis-

that a user program cannot enter the privileged state em- placement addressing mode (prog$a~+ space access)

cept in a controlled manner, the instructions which mod- share the same micro routine. ..>:~..,.:.\’.$., ~,..,

ify the entire status register are privileged. The bus cycles The user/supervisor functiomtw~~ information is ob-

generated by an instruction executed in user state are tained from the status re~i&?&~$~ser/supervisor infor-

classified as user state references. While the processor mation is not provided b~&<~’~~lcro control store due to

is in the user privilege state, those instructions which use micro control store woq$~*JQW constraints. Its exclusion

either the system stack pointer implicitly, or address reg- from the micro cont~~l sk~ge-implies that there must exist..+.**:,
ister seven (A7) explicitly access the user stack pointer. some means in t~,:$~~.o control store for direct manip-

ulation of the ,~S&~lWpervisor bit in the status register

2.1.2. Change of Privilege State during excqpt;~ ,#ocessing. In addition, there are sev-

Once the processor is in the user state executing in-
eral privilew instructions which can change the user/

structions, only exception processing (described below) super~ig}r bikAny prefetches done prior to manipulation

can change the privilege state. During exception pro- of t$~.$t~s register must be discarded. Since the micro

cessing the current setting of the S-bit of the status reg-
rod~in~ for manipulation of the user byte of the status

ister is saved, and the S-bit is forced on, putting the pro- ,:~r~~y? are shared with routines for manipulation of the

cessor in supervisor state. Thus when instruction “~Qtffe status register, the delay associated with ignoring

execution resumes at the address specified to procw .$ the prefetches is suffered by both instruction types.

the exception, the processor is in the supervisor pri~~~#~<

state.
.,: 2.2. Exception Processing,:,++!,,{$,

The transition from supervisor to user state.$8~&ac- 2.2.1. Processing States
complished by any of four instructions: R~&~~,~VE to
Status Register, ANDI to Staus Register, ?~@~.~~to Sta-

The processor is always in one of three processing

tus Register. The RTE instruction fetche%~hs,,tiew status
states: normal, exception, or halted. The normal pro-
cessing state is that associated with instruction execu-

register and program counter from ~’&~,:~@ervisor stack,
loads each into its respective reg~ter~and then begins

tion; the bus cycles are to fetch instructions and oper-

the instruction fetch at the new~i$~~~g~ counter address
ands, and to store results. The STOP instruction is a
special casa of the normal state in which no further bus

in the privilege state determi~d~. ~~ the S-bit of the new..t+.,‘;* ~xi<..~~ cycles are started.
status register. The MOVE,~~N~, and EORI to Status Reg-’ The exception processing state is associated with in-
ister instructions eachf$ch &8perands in the supervisor terrupts, trap instructions, tracing and othar exceptional
state, perform the a~$,~~pate update to the status rec- onditions. The exception may be internally generated,
ister, and then fet~,-~~::hext instruction at the next se- by an instruction or by an unusual condition arising dur-
quential progr~~o~ter address in the privilege state
determined b~{(~~~~ew S-bit.

ing the execution of an instruction. Externally, exception

,...,, processing can be forced by an interrupt, by a bus error,t*Y>>t.$~ ,Ij,
2.1.3.,4,*entation

or by a reset. Exception processing is designed to provide
an eticient context switch so that the processor may han-

TQe*~b~on of privilege states and the subsequent sys- dle unusual conditions.
te~~,@Qres affected implementation cost of the proces- Exceptions can be grouped according to their genera-
sor. ~xclusion of separate implicit stack pointers for the tion. The Group O exceptions are Reset, Bus Error, and
user and supervisor states caused increased complexity Address Error. These exceptions cause the instruction
in the register decoders which had to distinguish between currently being executed to be aborted, and the exception
a user and supervisor register for all implicit and explicit processing to com”mence at the next minor cycle of the
references to the system stack pointer (A7). Addition of processor. The Group 1 exceptions are trace and inter-
one 32-bit register to the execution unit was not a major rupt, as well as the privilege violations and illegal instruc-
cost factor, but did increase the width of the execution tions. These exceptions allow the current instruction to
unit. Since the supervisor mode is used to create user execute to completion, but preempt the execution of the
environments, instructions were required which allowed next instruction by forcing exception processing to occur,



The Group’ 2 exceptions occur as part of the normal pro-
cessing of instructions. The TRAP, TRAPV, CHK, and Zero
Divide exceptions are in this group.

Table 2. Exception Groups

Reset Exception processing begins at
Group O Bus Error the next minor cycle

Addr Error

Trace Exception processing begins
Interrupt

‘roup ‘ Illegal
before the next instruction

Privilege

TRAP, TRAPV, Exception processing is started
Group 2 CHK, by normal instruction execution

Zero Divide

The halted processing state is an indication of cata-
strophic hardware failure. For example, if during the ex-
ception processing of a Bus Error another Bus Error oc-
curs, the processor assumes that the system is unusable
and halts,

2.2.2. Exception Processing Initiation
The processor hardware recognizes three distinct types

of exception conditions: internal exceptions (Group 2),
non-catastrophic exceptions (Group 1), and catastrophic
exceptions (Group O). Exception processing for Group 2
exceptions is initiated throuah normal instruction exe-

The bus cycles generated during exception processing
are classified as supervisor references. All stacking op-
erations during exception processing use the supervisor
stack pointer.

Exception processing occurs in four identifiable steps.
During the first step, an internal copy is made of the status
register. After the copy is made, the special processor
state bits in the status register are changed. The S-bit is
forced on (1), putting the processor into supervisor priv-
ilege state. Also, the T-bit is forced to O (off), whic,Q will
allow the exception handler to execute unbind.~~~.py
tracing. For the reset and interrupt exception~@.ti,~~V~6r-
rupt priority mask is also updated.

.{,{’,.?*,~$:
.,. ‘i\\\,

In the second step, the vector number ,~~~~~e~ception
is determined. For interrupts, the veq$o%~ti~hber is ob-\ .{>$~$:.
tained by a processor fetch, classifie$,~~ qn Interrupt ac-
knowledge. For ail other exceptL$~#}:i~~rnal logic pro-
vides the vector number. This y~ct~~timber is then used
to generate the address of,t~$~~ception vector.

The third step is to sa@m’~~$ctirrent processor status.
Only for the Reset exc~,$$$$$s this not done. The current
Program counter va$~~~~~:the saved copy of the status
register are stacked “bqjng the supervisor stack pointer.
The program ~$~~~r value stacked usually points to the
ne%t unexe_~@struction. Additional information de-
fining th:ic~[re@ context is stacked for the Bus Error and
Addres$~@o? exceptions.

T$@ last$~tep is the same for all exceptions. The new
P[@~* counter value is fetched from the exception vec-
$#i.-Qh# processor then resumes instruction execution.

‘$,h%a$?nstruction at the address given in the exception vec-

9

cutio”n. Group 2 exceptions are detected and processed
via micro routines without the aid of specialized addi- ‘1~~’$%r is fetched, and normal instruction decoding and ex-

“S’ecution is started.

d
tional hardware.

When a Group 1 exception arises, execution of tw~cur-$~
rent macro instruction continues unaffected (i@u’’&@g
prefetch and decode of the next macro inst~e’~. At
the end of the current macro instruction, th@~.@~~Foutine
specifies that the next micro control .sto~~$wtess is to
come from the macro instruction \e~~~$~?oder, How-
ever, the existence of a Group 1 ex~p~ti condition will
force substitution of a micro con#bl&#e address for the
appropriate exception proce~~~’$:,~cro routine.

Occurrence of any Group\~ e~eptio’n implies that the
currently executing miG@tQtiWe cannot continue; the

it ,
exception micro routine a~~~ss preempts the current mi-
cro routine at the @~P minor cycle.

:~iJ\,.h>i#::$.
.+.:j~‘%

2.2,2.1. Excep@~tVetiors,,t,ii ,
Excepti~ Sfbrs are memory locations from which

the prows%$etches the address of a routine which will
handl~$ha$ exception. All exception vectors are two
wof~,~.~i~ength, except for the reset vector, which is four
~,{,~jn length. A vector number is an eight-bit number,

*E~ when multiplied by four gives the address of an
exteption vector. Vector numbers are generated inter-
nally or externally, depending on the cause of the excep-
tion. The exception vecto,rs are assigned to Iowaddresses
in the supervisor data space.

2.2.2.2. Exception Processing Sequence
All exception processing is done in supervisor state,

regardless of the setting of the S-bit in the status register.

2.2.2.3. Reset

2.2.2.3.1. Description

The Reset pin provides the highest level exception. The
processing of the Reset signal is designed for system
initiation, and recovery from catastrophic failure. What-
ever processing was in progress at the time of the reset
is aborted. The processor interrupt priority mask is set at
level seven. The vectdr number is internally generated to
reference the reset exception vector at location O in the
supervisor program space. Because no assumptions can
be made about the validity of register contents, in par-
ticular the supervisor stack pointer, neither the program
counter nor the status register is saved. The address con-
tained in the first two words of the reset exception vector
is used to initialize the supervisor stack pointer, and the
address in the next two words is used to initialize the
program counter. Finally instruction execution is started
at the address in the program counter.

2.2.2.3,2. Hardware Support

Hardware support for reset permeates the machine be-
cause reset must provide machine initialization from any
internal state. Activation of the reset pin preempts all
other pending conditions and current activities. Normal
operation of the control unit is suspended and the control
unit is forced to a state from which it begins executing
the reset micro routine. Bits in the nano control store are
provided to allow the micro routine to obtain the reset 4



vector address, force the machine into supervisor mode, affect execution of the current instruction. If an interrupt
and set the priority mask (to the level specified by a de- of suticient priority arrives, a pointer to the interrupt mi-
coder — in this case, level seven). Additionally, since the cro routine will be substituted for the micro routine
register designators for the preempted instruction are un- pointer from IR decode at the next macro instruction

o

known, the nano control store must provide bits which boundary. An interrupt acknowledge is accomplished by
can directly specify selection of the implicit stack pointer the interrupt micro routine via an internal path involving
for its initialization. no Iessthan six separate registers. Support for translation

and extension of interrupt vector addresses and creation

2.2.2.4. Interrupts of interrupt auto vector addresses is the responsibility of

2.2.2.4.1. Description
the field translate hardware in the MC68000. The micro

The MC68000 provides seven levels of interrupt prior-
routine uses the address from this special function{~”~~w

ities. Devices may be chained externally within interrupt
as a pointer to the location of the program cou~$e’~t~~

priorities, allowing an unlimited number of peripheral de-
the particular interrupt. Vectored, auto vectoredK~$~~~$&-

vices to interrupt the processor. Interrupt priority levels
rious interrupts are all handled by the sam$$,,@!~~u-
tine; the differences occur in vector ge,,~~m~~m bY the

are numbered from one to seven, level seven being the field translate unit.
~tr,f,.

highest priority. The status register contains a three-bit
~\\.i>

$:,>,~ *,
\,F.t>v...>,>,,!.,!!~

mask which indicates the current processor priority, and
~“+,.!,k‘?W

interrupts are inhibited for all priority levels less than or
2.2.2.5. Internally Generated @c&N@ns

equal to the current processor priority.
.:$, ~~

2.2.2.5.1. Description
$lyTK,.,$..

An interrupt request is made to the processor by en-
“+&%.\\.++!,$$??,,

Traps are exceptions caq&;@.b~~nstructions. They arise
coding the interrupt request level on the interrupt request either from processor rec@N~~#n of abnormal conditions
pins, a zero indicates no interrupt request. Interrupt re- during instruction exe*@, or from use of instructions
quests arriving at the processor do not force immediate whose normal behq~or ~~trapping.
exception processing, but are made pending. Pending in- Some instrucQ#~~*re used specifically to generate
terrupts are detected between instruction executions. If
the priority of the pending interrupt is Iowerthan or equal

traps. The TR@ l~~~fuction always forces an exception,
and is uset@J#*.i~plementing system calls for user pro-

to the current processor priority, execution continues
with the next instruction and the interrupt exception pro-

grams.,~he ~APV and CHK instructions force an excep-
tion if% user program detects a runtime error, which

cessing is postponed. (The recognition of level seven is
slightly different, as explained below.)

m~~’%g ‘~% arithmetic overflow or a subscript out of

If the priority of the pending interrupt is greater than
~&~Q$ The divide instructions will force an exception if

the current processor priority, the exception processing
w!~~ylslon operation is attempted with a divisor of zero.

D

““$illegal instruction is the term used to refer to any of the
sequence is started. first a copy of the status register:iis ~+~word bit patterns which is not the bit pattern of the first
saved, and the privilege state is set to supervisor, trqe~, word of a legal MC68000 instruction. Those word patterns
is suppressed, and the processor priority level is ~~ tat
the level of the interrupt being acknowledged#~#~@o-

with bits [15 12] = 1010 or 1111 are distinguished as un-
implemented instructions, and separate exception vec-

cessor fetches the vector number from the$J$,~~ry~ting
device, classifying the access as an int~~(~$~X8knowl-

tors are given to these patterns to permit eticient emu-
lation. If during instruction execution such an illegal

edge and displaying the level ,numbe~~~~~b interrupt
being acknowledged on the address’h~$.~xternal logic

instruction is fetched, an illegal instruction exception oc-
curs. This facility allows the operating system to detect

can respond to the interrupt ackn@’fe$g%-’read in one of
three ways: put a vector numb~@&~@ data bus, request

program errors, or to emulate unimplemented instruc-
tions in so~are.

automatic vectoring, or indi~te Yhat no device is re-
s-t~t* ‘ In order to provide system security, various instructions

spending (Bus Error). If e~~~h$?~ogic requests an auto- are privileged. An attempt to execute one of the privileged
matic vectoring, the pr~es&&$nternally generates a vec-
tor number which i,~~~~e~mined by the interrupt level

instructions while in the user privilege state will cause an
exception.

number. If external t)$g~w~ndicatesa Bus Error, the inter- To aid in program development, the MC68000 includes
rupt is taken t~~~~wrious, and the generated vector a facility to allow instruction by instruction tracing. In ‘
number refe(~n,~tie spurious interrupt vector. The pro- trace state, after each instruction is executed an exception
cessor th~~~eeds with the usual exception process- is forced, allowing a debugging program to monitor the
ing. No~~l i~struction execution commences in the in-
terru #~j&~3ing routine.

execution of the program under test.

RF4,Q~ level seven is a special case. Level seven in-
The trace facility uses the T-bit in the supervisor portion

terw~ cannot be inhibited by the interrupt priority
of the status register. If the T-bit is off (0), tracing is dis-
abled, and instruction executioti ‘proceeds from instruc-

mas~, thus providing a “non-maskable interrupt” capa-
bility. An interrupt is generated each time the interrupt

tion to instruction as normal. If the T-bit is on (1), at the
beginning of the execution of an instruction, a trace ex-

request level changes from some lower level to level
seven.

ception will be generated after the execution of that in-
struction is completed. If the instruction is not executed,

2.2.2.4.2. Hardware Support
either because an interrupt is taken, or the instruction is
illegal or privileged, the trace exception does not occur.

0’

On-chip logic provides detection and comparison of in- If the instruction is executed and an interrupt is pending
terrupt requests. Arrival of interrupt requests does not on completion, the trace exception is processed before



the interrupt exception. If the instruction generates an
exception, the generated exception is processed before
the trace exception.

As an extreme illustration of the above rules, consider
the arrival of an interrupt during the execution of a TRAP
instruction while tracing is enabled. First the trap excep-
tion is processed, then the trace exception, and finailythe
interrupt exception. Instruction execution resumes in the
interrupt handler routine.

2.2.2.5.2. Hardware Support

Trace, privilege violation, illegal instruction, and all in-
structions which cause a trap are handled in much the
same fashion as an auto vectored interrupt by the hard-
ware, They all share (except for some small initial differ-
ences) a single micro routine, Again, as with interrupts,
the field translate unit provides the vector address for the
program counter. The decode of an illegal instruction, or
a privileged instruction in user mode causes the macro
instruction dec,ode logic to generate a pointer to a special
micro routine which returns the machine to supervisor
mode and effects a trap, Considerable additional hard-
ware is required to detect these errors and to create the
address of the exception vector; and increased control
store space is necessary for the special micro routine.

2.2.2.6.’ Bus Error/Address Error

2.2.2.6.1, Description

Bus Error exceptions occur when external logic re-
quests that a Bus Error be ~rocessed by an exception.

removes itself from the system rather than destroying all
memory contents. Only the RESET pin can restart a halted
processor.

Address Error exceptions occur when the processor at-
tempts to access a word or a long word operand at an
odd address. The effect is much like an internally gen-
erated Bus Error, so that the bus cycle is aborted, and the
processor begins exception processing. After exception
processing commences, the sequence is the same as that
for Bus Error, except that the vector number refers to the
Address Error vector. tikewise, if an Address Errqr$@curs
during the exception processing for a Bus Er~~~,~~N%sq
Error, or Reset, the processor is halted. = ,~} “?~:

~’~.:<tl,i.{,>..,,,,*.,*.,...J\.&~:.<,~.~,,,.
2,2.2.6.2. Hardware Support

,.<,L$,((<.$:>~$?$,.~:
~i,e.?

During execution of a micro r@~~~$@Yhe program
counter value is often moved t~’’’%~poraryry register
where it is manipulated. An uRida?~,:$alue of the program
counter is returned to the D*~m counter register prior
to the end of the micro,{&’~~~&.Macro instructions con-
tain from one to five WWS and it is not convenient or,.,,~,,>..:*.).,,,,,
efficient to attempt..t&w&titain an updated value in the‘?+:x~,,,:~\\
program counter th~~gfiout all micro routines. Since oc-
currence of a ,,~’~$u~ O exception truncates execution of-%+..,?+/?,*,\.
the curren~m~~~ routine the internal state of the exe-
cution uol~.an;$, most importantly, the program counter
(whic&tj&<?>Eked during exception processing) are not
we$~defibd for the current implementation. Conditions
f~r ~Qcessing a Group 1 or a Group 2 exception are such

#$~~$ the program counter is always well-defined.
~\i:</\\:,$..hk:,,.<~~

The current bus cycle which the processor is mating i#f~,,$ 2.2.3. Multiple Exceptions
aborted. Whatever processing the processor was doing, ‘“~$

2.2.3.1. Description
This section describes the processing which occurs 4

instruction or exception, is terminated, and the pro~ss&-
immediately begins exception processing. .,.’+~x$

Exception processing for Bus Error follow~h,~u$hai
sequence of steps. The status register is c:~+~~~t:’ffiesu-
pervisor state is entered, and the trace s@tM$$,J&rned off.
The vector number is generated to ref~~~&@% Bus Error
vector. Since the processor was not ~~,~~n instructions
when the Bus Error exception req~~~s made, the con-
text of the processor is more ~ta@%~ To save more of
this context, additional inf~_~l~# is saved on the su-
pervisor stack. The progr:~.~:$wnter and the copy of the

,,.”-9>.~’*’+‘
status register are of carsq,saved. Besides the usual in-
formation, the pro~sso}@’ves the internal copy of the
first word of the iqa$~d~.on being processed, and the ad-
dress which was &i@# accessed by the aborted bus cycle...:,.J‘,:lil,,<?i+.. .
Also saved,~r$~peclflc information about the access:
whether i~{~&~O~read or a write, whether the processor
was prms~gg an instruction or not, and the classifica-
tion,,,Q~&@~@~edon the function code pins when the Bus
Err~#fiWurred. Although this information is not sufficient

$@Lg,peral to effect full recovery from the Bus Error, it
4~es allow sotiware diagnosis. Finally, the processor
cdmmences instruction processing at the address con-
tained in the Bus Error exception vector,

If a Bus Error occurs during the exception processing
for a Bus Error, Address Error, or Reset, the processor is
halted, and all processing ceases. This simplifies the de-
tection of catastrophic system failure, since the processor

when multiple exceptions arise simultaneously. Group O
exceptions have highest priority; Group 2 exceptions
have lowest priority, Wthin Group O, Reset has highest
priority, followed by Bus Error and Address Error. Within
Group 1, trace has priority over external interrupts, which
in turn takes priority over illegal instruction and privilege
violation, Since only one instruction can be executed at
once, there is no priority relation within Group 2.

The priority relation between two exceptions deter-
mines which is taken, or taken first, if the conditions for
both arise simultaneously. The description above of the
tracing a TRAP instruction when a interrupt arrives is an
example of the application of the priority relation, In an-
other example, if a Bus Error occurs during a TRAP in-
struction, the Bus Error takes precedence, and the TRAP
instruction processing is aborted.

2,2.3.2. Hardware Support
It is possible for several exception conditions to be

present at once. An exception priority network is used to
provide hardware arbitration among multiple exception
conditions which can occur. The network keeps track of
the arrival and status of exception conditions, forms the
micro control store starting address for the highest prior-
ity exception condition, and generates the address sub-
stitution signal at the appropriate time.
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‘Instruction Prefetch on the MC68000

The MC68000 uses a’two-word tightly coupled prefetch
mechanism to enhance performance. This mechanism is
described in terms of the microcode operations involved.

DEFINITION: The execution of an instruction begins
when the microroutine for that instruction is entered.

Using this definition, some features of the prefetch
mechanism can be described.

1)

2)

‘ 3)

4)

5)

When execution of an instruction begins, the opera-
tion word and the word following have already been
fetched. The operation word is in the instruction
decoder.

In the case of multiword instructions, as each addi-
tional word of the instruction is used internally, a fetch
is made to the instruction stream to replace it,

The last fetch from the instruction stream is made
when the operation word is discarded and decoding
is started on the next instruction.

If the instruction is a single word instruction causing
a branch, the second word is not used, But because
this word is fetched by the preceding instruction, it is
impossible to avoid this superfluous fetch. In the case
of an interrupt or trace exception, both words are not
used.

The following example illustrates many of the features 4

of prefetch. The contents of memory are assumed to be
as illustrated in Figure 1.

The sequence we shall illustrate consists of the p~wer-
up reset, the execution of NOP, BRA, SUB, the ~~~@$of
an interrupt, and the execution of the MOVEJWx~L to
yyy.L. The order of operations described w~$~~~$h mi-
croroutine is not exact, but is intended fo,~~u~ratlve our-
poses only.

Microroutine

Reset

*.~:$, ,, *J:4k>?:tJ+2
The program counter points to the last word fetched,,,,+. *

<begin SUB>

from the instruction stream,
vl:;~~UB Read + (Pc) CMP

.,.\\,,
Read DISP (AO) <src>

Literature Distribution Centers:

Read + (Pc)
<begin CMP> <take INT>

INTERRUPT Write - (SSP)
Write -(SSP)
Read <INT ACK>
Write -(SSP)
Read (VR)
Read + (VR)
Read (Pc)
Read + {PC)
<begin MOVE>

MOVE Read + (Pc)
Read + (PC}
Read xxx
Read + {PC)
Read + (Pc)
Write YYY
Read + (Pc)
<begin NOP>

SGE

PC Low
PC High
Vector #
SR
PC High
PC Low
MOVE
xxx High

xxx Low
WY High
<src>

yyy Low
NOP
<dest>
SWAP

FIGURE 2. INSTRUCTION OPERATION SEQUENCE
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